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EXECUTIVE SUMMARY 

In an era of big data and emergence of new technologies such as app-based ride services, there are 

growing opportunities for better understanding human mobility patterns from newly available data 

sources. Statistical models have been mainly utilized to uncover and rigorously calibrate the 

influence of significant factors; and machine learning algorithms have been used to explore 

complex patterns through improved computing efficiency for large datasets. Focusing on discrete 

choice modeling applications, this research aims to introduce an open-source computational graph 

(CG)-based modeling framework for integrating the strengths of econometric models and machine 

learning algorithms. In particular, multinomial logit (MNL), nested logit (NL), and integrated 

choice and latent variable (ICLV) models are selected to demonstrate the performance of the 

proposed graph-oriented functional representation. Furthermore, the calculation of the gradient in 

the log-likelihood function and associated Hessian matrix is systematically accomplished using 

automatic differentiation (AD). Using the 2017 National Household Travel Survey data and an 

open-source dataset, we compare estimation results from the proposed methods with those 

obtained from two open-source packages, namely Biogeme and Apollo. The results indicate that 

the CG-based choice modeling approach can produce consistent estimates of parameters and 

accurate calculations for the gradients of the estimated parameters with substantial computational 

efficiency. 
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INTRODUCTION 

The emergence of massive datasets and widespread internet accessibility across the world have 

offered valuable opportunities for exploring interconnection between physical/cyber 

infrastructures and human mobility patterns. This has fostered development of techniques to fuse 

and analyze multiple data sources such as travel surveys, mobile phone data records, GPS, or 

sensor data (Hashem et al., 2016; Chen et al., 2016; Wu et al., 2018; Chen and Kwan., 2020). With 

growing interests to explore available data sources, many scholars have executed machine learning 

methods to efficiently estimate complex hidden patterns in large-scale datasets. In the field of 

transportation systems, data-driven approaches have been used to identify patterns of diverse 

traffic flows as well as assist decision makers to predict future trends (Bhavsar et al., 2017; Chang 

et al., 2019; Zhao et al., 2020). More recently, the research community has taken further steps to 

develop interpretable machine learning techniques while significant progress has been made in 

selecting significant variables that affect travel-related choices, enabling the explanation and 

testing of predicted results (Ribeiro et al., 2016; Lipton, 2018; Molnar, 2020). These research 

streams point to a potential paradigm shift in transportation demand modeling. 

Transportation planners have also recognized that machine learning methods demonstrate high 

predictive performance and computing efficiency for large-scale mobility datasets, but those data-

driven approaches still need to systematically meet standard requirements and expectations 

associated with modeling travel data sets (e.g., travel surveys) in transportation planning. The 

desirable statistics-oriented features include illustrating causal relationships, avoiding overfitted 

results in relatively small data sets, as well as generating robust standard error estimates for 

hypothesis testing. If a model estimates only the correlation in a given data set, as pointed out by 

Mokhtarian (2018), the causation would be eliminated, impeding the ability to answer “why” and 

“what might happen if” questions. Importantly, incorporating these factors enables researchers and 

decision makers to deeply fathom the traveler’s behavioral patterns. In light of this, statistical 

modeling approaches have generally been applied in explaining the cause-and-effect relationship 

and analyzing travel survey data (Paredes et al., 2017; Brathwaite and Walker, 2018).  

In order to bridge the gap between both modeling approaches (i.e., statistical models and machine 

learning algorithms), this research aims to present a computational framework that can leverage 

capabilities of existing machine learning platforms to tackle classical estimation problems for 

discrete choice models. Using a traditional household travel survey dataset and a synthetic dataset 

available in the Apollo econometric modeling R package, we show how to construct a flexible and 

efficient modeling framework that utilizes data-driven algorithms in estimating econometric 

models.  The suggested approach could be useful in tackling other estimation problems, such as 

analyzing multi-dimensional samples from passively collected big data (spatio-temporal 

dimensions) and enabling real-time updates (predictions) in transportation systems (Nuzzolo and 

Comi, 2016). 

The concept of computational graphs (CGs) is systematically introduced to establish an extended 

statistical modeling platform capable of covering large-scale datasets and non-linear architectures 

(e.g., deep neural networks (DNNs)).  The computational graph (CG)-based choice models can 

take full advantage of automatic differentiation (AD) techniques, which have been widely used in 

machine learning fields (Abadi et al., 2016; Baydin et al., 2017; Paszke et al., 2017). Three 

different discrete choice models in transportation planning, namely, multinomial logit (MNL), 

nested logit (NL), and integrated choice and latent variable (ICLV) functions, are reformulated as 
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computational graphs to estimate parameters and associated statistical properties such as standard 

errors. These three model forms are chosen because of their widespread use in the field of travel 

choice modeling. We also examine the flexibility of the modeling structure, and its capability of 

handling non-concave likelihood functions and simulation-based evaluation of multi-dimensional 

integrals in latent variable models. Open-source packages, Biogeme (Bierlaire, 2003) and Apollo 

(Hess and Palma, 2019) are used as test benchmarks, with the publicly accessible National 

Household Travel Survey (NHTS) 2017 dataset and the synthetic dataset available in the Apollo 

package serving as use cases.   

The remainder of this report is organized as follows. Section 2 presents the literature review with 

a particular focus on the integration of statistical models and machine learning methods. Section 3 

describes the National Household Travel Survey (NHTS) 2017 and the synthetic datasets. In 

section 4, the computational graph-based choice models are presented in detail with an emphasis 

on meeting estimation expectations in planning applications. The estimation and benchmarking 

results are discussed in section 5. 

 

LITERATURE REVIEW 

This section addresses three aspects: integration of discrete choice models and machine learning 

methods, optimization algorithms, and techniques for computing gradients in objective functions.  

Focusing on the concept of computational graph (CG) and its example, we also provide a 

discussion of the motivations behind our proposed approach. 

 

Integration of choice models and machine learning algorithms 

Recently, research communities have studied hybrid modelling approaches to integrate strengths 

of machine learning algorithms into discrete choice models (DCMs). For example, Sifringer et al. 

(2018) proposed a hybrid modeling framework for combining neural networks and multinomial 

logistic (MNL) models. Selecting the input features that are relatively uncorrelated with choice 

alternatives, dense neural network (DNN) learned hidden patterns were derived and the trained 

information was transmitted into the utility function defined in MNL. This methodology 

interpreted the specified parameters and led to higher log-likelihood values and improved 

predictive power. Han et al. (2020) further developed an extended framework to integrate MNL 

and the constrained data-driven structure (multi-layer perceptron (MLP)). Embedding MLP into 

the utility function of MNL, their approach demonstrated better predictive performance while 

maintaining the interpretability and preventing the model from over-fitting. More recently, 

Sifringer et al. (2020) showed the enhanced choice models by embedding neural networks into the 

specified utility functions of the MNL and NL models. In a residual logit (ResLogit) model 

proposed by Wong and Farooq (2019), recursive residual layers were constructed in the utility 

function of the standard MNL model to capture unobserved heterogeneity. Overall, these above-

mentioned modeling efforts aim to resolve overfitting while preserving the econometric 

interpretability.  

 

Although significant progress has been made to integrate machine learning algorithms in DCM, 

there are still many challenges to be addressed. First, the existing hybrid models (Sifringer et al., 

2018; Han et al., 2020; Sifringer et al., 2020) estimate parameters mainly based on the Adam 

optimizer proposed by Kingma and Ba (2014) or stochastic gradient descent (SGD) (Bottou, 2010). 

In terms of optimizing objective functions, the first order-based estimators can be computationally 
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effective to analyze a large-scale dataset and calibrate numerous parameters. However, we have to 

recognize that there are various model structures in which we are dealing with non-concave 

functions (e.g., nested logit (NL) model (Williams, 1977)) or simulation-based models involving 

computation of high-dimensional integrals such as the integrated choice and latent variable (ICLV) 

model (Ben-Akiva et al., 2002) and the hybrid choice model with a nonlinear utility function (Kim 

et al., 2016). Second, the first order-based estimation might not be able to provide desirable 

statistical properties in computing the Hessian matrix. These challenges require a systematic and 

careful analysis for an effective combination of machine learning techniques and optimization 

algorithms in the context of statistically-oriented choice models for transportation applications. 

  

Optimization algorithms for discrete choice models  

In the area of discrete choice modeling, maximum likelihood estimation (MLE) is one of the 

fundamentally important estimation methods. By computing the first order (gradient) and second 

order (curvature) derivatives of the likelihood function, MLE furnishes values of parameters by 

maximizing the likelihood function through the use of the Hessian matrix. The derivatives are 

computed by three approaches: manual/analytical, finite difference, and automatic differentiation 

(AD) (Bartholomew et al., 2000). Due to the difficulty of embedding/coding highly nonlinear 

forms in complicated functions, manual differentiation could be used for some very small cases. 

The numerical differentiation aims to approximate derivatives through the finite differencing, but 

the solution quality is greatly affected by the potential truncation and round-off errors associated 

with different finite difference formulas (Wright and Nocedal, 1999). On the other hand, the 

automatic differentiation (AD) technique utilizes the chain rule-based principle and intermediate 

variables to evaluate complex derivatives analytically (Wright and Nocedal, 1999; Griewank, and 

Walther, 2008). Specifically, in the new generation of low-level computational graph libraries such 

as Tensorflow and PyTorch, the computing architecture can enable modelers to represent the 

analytical optimization model through a graph of simple elementary operations (i.e., addition, 

subtraction, multiplication, and division) and elementary functions (e.g., natural logarithm), and 

further execute a sequential and complex structure of computations easily. In new domain-specific 

languages (DSLs) for convex optimization such as CVXPY, progress has been made recently to 

convert standard convex optimization to detailed CG representations with low-level solver 

interfaces (Agrawal et al. 2018).  It should be noted that AD might still encounter the difficulty of 

computing piecewise rational functions, especially when estimating gradients of non-smooth 

composite functions (Beck and Fischer, 1994; Nocedal and Wright, 2006).  

 

In the machine learning area, the sequential structure and computational graph approach have been 

widely applied for large-scale datasets with numerous parameters to be calibrated. These 

applications have demonstrated the capability of these approaches in computing gradients and 

Hessians of non-linear optimization formulations efficiently and precisely (Baydin et al., 2017). 

From a specific system identification perspective, the AD technique has been utilized in the fields 

of machine learning and econometric modeling to estimate parameters, thanks to its computational 

efficiency and flexibility of designing diverse composite functions (Sifringer et al., 2018; Wong 

and Farooq, 2019; Sun et al., 2019; van Kesteren and Oberski, 2019; Han et al., 2020). Furthermore, 

in the case of discrete choice modeling (DCM), by carefully selecting the underlying computing 

algorithms, AD holds the promise for more precise computation of derivatives of the log likelihood 

with respect to specified parameters through chain rules and back propagation. That is, simply 

using the popular first order methods (e.g., SGD or Adam) is often inadequate in estimating 
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complicated modeling structures (e.g., NL or ICLV). Thus, our research combines the AD 

technique with quasi-second order methods, e.g., Broyden-Fletcher-Goldfarb-Shanno (BFGS), to 

calibrate non-concave composite functions and deliver consistent statistical estimates through 

Hessians.  

 

Computational graph (CG) 

Understanding computational graph (CG) approach is important for designing flexible modeling 

structures that integrate choice models and machine learning seamlessly. Using the binary logit 

model in Eq. (1) as an example, Wu et al., (2018) and Sun et al. (2019) took a few initial steps to 

illustrate how CG can decompose complex composite functions as follows. 

 
 

P (𝑦 = 1) =
1

1 + 𝑒−𝑉
 (1) 

 

Eq. (1) indicates the probability of choosing a binary alternative, and the term 𝑉 is a specified 

utility function (e.g., V = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑛𝑥𝑛  where 𝛽𝑛  is the unknown parameter 

associated with the attribute 𝑥𝑛). Using the concept of computational graph (CG), this logistic 

function is now expressed as a directed graph which consists of nodes (elementary operations) and 

edges (directions): 

 

 
Figure 1 Computational graph (CG) of the binary logit model 

 

 

Fig. 1 clearly illustrates the logistic formulation written in Eq. (1) as a sequentially nested structure 

made up of nodes and edges. In particular, Fig. 1(a) is the process of computing the probability of 

a given binary alternative, and Fig. 1(b) represents the procedure of estimating parameters. For 

example, the parameter 𝛽1 is obtained by the defined nodes and links shown in Fig. 1: 
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 𝜕P

𝜕𝛽1
=

𝜕P

𝜕𝑁5
∙
𝜕𝑁5

𝜕𝑁4
∙
𝜕𝑁4

𝜕𝑁3
∙
𝜕𝑁3

𝜕𝑁1
∙
𝜕𝑁1

𝜕𝛽1
=

𝑥1

(𝑁5)
2
∙ e−𝑁3 =

𝑥1

(1 + 𝑒−𝑉)2
∙ e−𝑉 (2) 

 

Eq. (2) presents the analytic derivative with respect to the parameter and the description of the 

chain rule-based computation. Furthermore, applying the gradients in the BFGS optimizer, this 

computed differentiation offers more precise Hessians.  In this context, it is helpful to compare the 

computed values in Eq. (2) with analytical sensitivities detailed in Koppelman and Bhat (2006) 

and Train (2009). 

 

To calibrate a broader set of DCMs in transportation planning with rigorously defined standard 

error estimates, we will tackle three econometric models (i.e., multinomial logit,  nested logit , and 

integrated choice and latent variable) to demonstrate the capability of the enhanced choice 

modelling framework along three directions: the numerical efficiency of processing a high-

dimension survey sample, greater flexibility in employing different composite functions (e.g., deep 

learning architectures), and realization of desirable statistical properties. A widely used machine 

learning platform, TensorFlow (Abadi et al., 2016), is selected to implement the proposed CG-

based discrete choice models, and the source code can be downloaded at Kim et al. (2021). There 

are other computational graph-oriented programming platforms such as Theano (Bastien et al., 

2012) or Pytorch (Paszke et al., 2017). In addition, to systematically verify the estimated 

parameters and statistical properties, two leading open-source packages for estimating DCMs, 

namely Biogeme (Bierlaire, 2003) and Apollo (Hess and Palma, 2019), are used to serve as 

benchmarks.  

 

It should be noted that the concept of computational graph has been adapted in the pioneering 

open-source DCM estimation package, Biogeme, in 2000, through the use of chain rule 

differentiation and analytical gradients.  In our proposed domain-specific languages (DSLs) for 

maximum likelihood estimation of various DCMs, we do not need to build the low-level 

computational graph manually through a general-purpose language (GPL); instead, we translate 

the corresponding DCM optimization to forms compatible to the interfaces of recent CG libraries 

(e.g., TensorFlow). By doing so, our approach can further fully utilize the backpropagation 

mechanism provided by differentiable optimization layers/pipelines. The DSLs for MLE-DCM 

helps modelers greatly reduce the computational redundancy by decomposing the computing units 

in a layered structure and enabling the use of dynamic programming for iteratively finding a 

solution. The development of domain-specific languages requires a deep understanding of the 

problem structure and domain knowledge, and we will further highlight the potential for 

integrating different transportation modeling elements of more complex estimation and planning 

problems in the conclusion of this paper.   

 

  

https://en.wikipedia.org/wiki/General-purpose_language
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DATA PREPARATION 

Two datasets are utilized in this research: the 2017 National Household Travel Survey (NHTS) 

dataset for estimating MNL and NL models, and a synthetic dataset provided by Hess and Palma 

(2019) to estimate the extended integrated choice and latent variable or ICLV model. 

 

National Household Travel Survey (NHTS) dataset 

The dataset used for the case study is derived from the National Household Travel Survey (NHTS 

2017) conducted by the US Department of Transportation. This data set provides information about 

travel behavior, particularly associated with trip purposes and modes. In the current study, this 

large-scale dataset with 923,572 trips is explored.  To alleviate unobserved taste heterogeneity, we 

restrict the scope of the trip purpose and time-dimension by selecting commuting trips (home to 

work trips) departing between 6 and 9 AM.  

 

After filtering the dataset based on criteria and eliminating obviously erroneous observations or 

those with large amounts of missing data, the final subsample size used for the model estimation 

is 40,177 observations. Table 1 depicts the travelers’ socio-economic and demographic information, 

as well as travel time and distance variables that are subsequently used as explanatory variables in 

the specification of the utility function. The five alternatives, namely drive alone (DA), shared ride 

(SR), transit (TR), bike, and walk, are considered as the choice elements in the proposed MNL and 

NL choice models. In terms of person characteristics, 84.3 percent of the commuting trips are 

accounted for by those age 30-74 years. The gender ratio of this subsample is nearly 51 percent 

male and 49 percent female. In terms of educational attainment, travelers who earned the 

bachelor’s degree and graduate degree account for 29.8 percent and 26.1 percent of the commute 

tours, respectively. Among household attributes, individuals within the household income 

categories ($50,000-$124,999 and $125,000 or above) account for 76.7 percent of the commute 

tours. Two-person households and individuals living with five persons or more account for the 

highest and lowest proportion of commute tours, respectively. Nearly 79 percent of commuters 

travel from an urban area. According to travel characteristics, the average commute distance is 

12.9 miles with a standard deviation of 15.8 miles, and the average time taken is 27.3 minutes with 

a standard deviation of 27.9 minutes. The distribution of commute mode choices is 79.3 percent 

of commute trips by drive alone (DA), 13.8 percent by shared ride, 3.8 percent by transit, and 3.1 

percent by bike and walk. This mode choice distribution follows a similar pattern in a prior study 

by Paleti et al. (2013). 
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Table 1. Description of the subsample (N=40,177)  

Person characteristics Frequency  Percentage (%) 

Age    

    Less than 18 years 111 0.3 

    18-24 years 2,259 5.6 

    25-29 years 3,549 8.8 

    30-44 years 11,502 28.6 

    45-59 years 15,094 37.6 

    60-74 years  7,270 18.1 

    75 years or above   392 1.0 

Gender     

    Male 20,387 50.7 

    Female 19,790 49.3 

Education attainment     

    Less than bachelor’s degree 17,723 44.1 

    Bachelor’s degree 11,976 29.8 

    Graduate degree 10,478 26.1 

Household characteristics Frequency Percentage (%) 

Household income     

    Under $25,000 2,812 7.0 

    $25,000 - $49,999 6,560 16.3 

    $50,000 - $124,999 10,491 26.1 

    $125,000 or above 20,314 50.6 

Household size     

    1 (I am the only person) 6,284 15.6 

    2 people 17,468 43.5 

    3 people 7,270 18.1 

    4 people  6,032 15.0 

    5 people or more 3,123 7.8 

Travel characteristics Continuous (average) 

Trip distance in miles & Trip duration in minutes 12.88 miles & 27.33 minutes 

Endogenous variable Frequency Percentage (%) 

Trip mode   

    Drive alone (DA) 31,872 79.3 

    Shared ride (SR) 5,530 13.8 

    Transit (TR)  1,543 3.8 

    Bicycle  386 1.0 

    Walk  846 2.1 

 

 

Synthetic dataset 

The lack of attitudinal questions in the NHTS dataset renders it unsuitable for constructing ICLV 

components, i.e., structural models with latent variables and measurement equations. As a result, 

we utilized an alternative synthetic dataset that accompanies the Apollo package to estimate the 

ICLV model (instead of using the NHTS dataset). This dataset documents drug choices for 1,000 

individuals; four alternative choices, three socio-demographic characteristics, and four attitudinal 

questions are presented. The explanatory variables to construct the structural equation of a latent 

variable were binary in nature: regular drug users, university degree attainment, and age 50 years 

and above. In addition, the attitudinal questions to define the measurement equations followed a 
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Likert scale from 1 (strongly disagree) to 5 (strongly agree). Four attitudinal questions are selected 

as measurement equation indicators. The detailed description of the drug choice data is well 

documented in Hess and Palma (2019).   

 

MODELING FRAMEWORK AND METHODOLOGY 

This section presents the mathematical formulations of MNL, NL, and ICLV models, the 

computational graph-based modeling frameworks, as well as the stepwise procedure of estimating 

the proposed graph-oriented functions. Using the travel survey dataset, we develop the systematic 

utility function and the probability of choice alternatives, namely drive alone (DA), shared ride 

(SR), transit (TR), bike, and walk, to estimate MNL and NL models. On the other hand, the ICLV 

components (i.e., the structural equation of the latent variable, measurement indicators, utility 

functions, as well as the probability of a drug choice between four alternatives) are constructed 

using the synthetic dataset.  

 

Mathematical formulations of the MNL and NL models 

With the fundamental assumptions that error components in the utility function are independently 

and identically distributed according to a Gumbel distribution, the functional formulation of the 

multinomial logit (MNL) model can be defined clearly. The probability that a decision maker 𝑛 

chooses an alternative mode 𝑖 among a set of 𝐽 alternatives (i.e., DA, SR, TR, bike, and walk) is 

as follows (McFadden, 1974): 
 

 
𝐏𝑛,𝑖 =

𝑒𝑉𝑛,𝑖

∑ 𝑒𝑉𝑛,𝑗
𝑗𝜖𝐽

 (3) 

 

where 𝑉𝑛,𝑖  denotes the systematic utility of the alternative mode 𝑖 𝜖 𝐽  selected by the decision 

maker 𝑛, and the structural utility function includes alternative specific constants and observed 

attributes with their parameters (i.e., 𝑉𝑛,𝑖 = 𝐴𝑆𝐶𝑖,𝑛 + ∑ 𝛽𝑘,𝑖𝑥𝑘,𝑖,𝑛
𝐾
𝑘=1 ). The index 𝐽 is the set of the 

specified alternative choices. 𝐾 represents the number of attributes used as choice predictors.  

 

By reformulating the MNL structure to relax the independence of irrelevant alternatives (IIA) 

property of MNL, the nested logit (NL) can be specified (Williams 1977; McFadden 1978). In 

particular, two layered structures are considered in this study. The upper level of NL includes drive 

alone (DA), shared ride (SR), transit (TR), and the non-motorized group, and the two alternatives 

(i.e., bike and walk) included in the non-motorized group are located in the lower level.  

 

The functional formula of the choice probability is expressed by the product of the conditional 

probability and the marginal probability. For instance, the probability that a decision maker 𝑛 

selects an alternative 𝑖 in the nest 𝑚 is formulated as: 
 

 
𝐏𝑛,𝑖 = 𝐏𝑛,𝑖|𝐽𝑚 × 𝐏𝑛,𝐽𝑚 =

𝑒𝑉𝑛,𝑖/𝜆𝑚

∑ 𝑒𝑉𝑛,𝑙/𝜆𝑚
𝑙∈𝐽𝑚

×
𝑒(𝑉𝑛,𝑚+𝜆𝑚Γ𝑛,𝑚)

∑ 𝑒(𝑉𝑛,𝑗+𝜆𝑗Γ𝑛,𝑗)𝑀
𝑗=1

 (4) 

  

In Eq. (4) the first component is the conditional probability that the decision maker 𝑛 chooses 

either a bike or walk mode given that the non-motorized group 𝐽𝑚  is selected, and the second 

component is the marginal probability of choosing between drive alone, shared ride, transit, and 

the nested group. 𝜆𝑚  is the logsum parameter bounded by zero to one, an indicator of the 
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correlation between bike and walk; the parameter is explained well in Koppelman and Bhat (2006). 

The inclusive value Γ𝑛,𝑚 (or often called log-sum term) is defined by Γ𝑛,𝑚 = log[∑ 𝑒𝑉𝑛,𝑙/𝜆𝑚
𝑙∈𝐽𝑚 ] 

where this term is associated with the nested group. Readers interested in the derivation of the 

mathematical formulations can find details in Koppelman and Bhat (2006) and Train (2009).  

 

Mathematical formulations of the ICLV model 

ICLV incorporates a latent variable model into a multinomial discrete choice model. To enable this 

integrated model, four components are generally required to be specified; a latent variable, 

measurement indicators, utility functions, and choice probabilities (Ben-Akiva et al., 2002). First, 

the latent variable formulated as a function of observable explanatory variables with a stochastic 

component is given by: 

 
 𝑋𝑛

∗ = 𝛾𝑧𝑛 + 𝜂𝑛 (5) 

  

Eq. (5) indicates the structural equation for the latent variable 𝑋∗  influenced by explanatory 

variables 𝑧𝑛 including three socio-demographic characteristics (in this study) with parameters 𝛾. 

The stochastic term 𝜂𝑛  follows a standard normal distribution  𝜂𝑛~𝑁(0, 1) . Second, the 

probability distribution function of the continuous measurement indicators is expressed as follows: 

 
 

𝑓𝑛(𝐼𝑛|𝑧𝑛, 𝑋𝑛
∗ ; 𝜻, 𝝈) =

1

√2𝜋𝜎𝑘
2
𝑒

−
(𝐼𝑛,𝑘−𝐼𝑘̅−𝜁𝑘𝑋𝑛

∗ )
2

2𝜎𝑘
2

 (6) 

 

where the continuous measurement indicators are defined by 𝐼𝑛,𝑘 = 𝜁𝑘𝑋𝑛
∗ + 𝑣𝑛. 𝐼𝑛,𝑘 represents an 

indicator associated with an attitude 𝑘 ∈ 𝐾  and the continuous measurement model. 𝐼𝑘̅  is the 

average of the indicator 𝑘. Subtracting it from 𝐼𝑛,𝑘, we avoid estimating the mean of the normal 

density. 𝜁𝑘  is the attitudinal coefficient for the latent variable 𝑋𝑛
∗  , and 𝑣𝑛  is the stochastic 

component characterized by a standard normal distribution 𝑣𝑛~𝑁(0, 1) . Third, the systematic 

utility function is specified by 𝑉𝑛,𝑖 = ∑ 𝛽𝑠,𝑖𝑥𝑠,𝑛,𝑖
𝑆
𝑠=1 + 𝜆𝑋𝑛

∗   , where 𝛽𝑠,𝑖  and 𝜆  are coefficients of 

choice predictors and the latent variable, respectively.  𝑉𝑛,𝑖 represents the utility function of the 

alternative drug 𝑖 selected by the decision maker 𝑛. Lastly, the probability that a decision maker 𝑛 

chooses a drug 𝑖 among a set of four products is defined by the multinomial logit formulation. 

Using the defined components above, we can obtain the joint choice probability as follows (Ben-

Akiva et al., 2002; Vij and Walker, 2016): 

 
 

𝐏𝑖 =  ∫∏
1

√2𝜋𝜎𝑘
2
𝑒

−
(𝐼𝑛,𝑘−𝐼𝑘̅−𝜁𝑘𝑋𝑛

∗)
2

2𝜎𝑘
2

×
𝑒𝑉𝑛,𝑖

∑ 𝑒𝑉𝑛,𝑗
𝑗𝜖𝐽

× 𝜙(𝜂𝑛)𝑑𝜂𝑛

𝐾

𝑘=1𝜂𝑛

 (7) 

 

In Eq. (7), the first component is the likelihood of the continuous measurement indicators, the 

second term is the multinomial logit model, and the third term is derived from the structural 

equation of the latent variable. Since Eq. (7) has no closed-form solution, this joint choice 

probability function is conventionally approximated using a Monte Carlo simulation-based 

approach:  
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𝐏𝑖 ≅
1

𝑇
∑∏

1

√2𝜋𝜎𝑘
2
𝑒

−
(𝐼𝑛,𝑘−𝐼𝑘̅−𝜁𝑘𝑋𝑛,𝑡

∗ )
2

2𝜎𝑘
2

×
𝑒𝑉𝑛,𝑖,𝑡

∑ 𝑒𝑉𝑛,𝑗,𝑡
𝑗𝜖𝐽

𝐾

𝑘=1

𝑇

𝑡=1

  (8) 

 

Drawing the standard normal distribution function 𝜂𝑛  iteratively, we can simulate the 

multidimensional integrals, thus deriving Eq. (8); 𝑇 is the total number of draws. The detailed 

description of simulation-based approaches can be found in Train (2009). With the above-derived 

functions, we now present the procedure of constructing computational graph-based models.   

 

Illustration of the computational graph-based modeling approach 

This subsection presents the CG-based modeling structures for MNL, NL, and ICLV. We present 

an illustrative example to demonstrate the sequential process of formulating the probability 

functions associated with mode choices and drug choices in the two datasets respectively. In this 

description, the probability of choosing the walk mode is exemplified using MNL and NL, and the 

probability of selecting a drug between four alternatives is illustrated for the ICLV.   

 

CG-based multinomial logit model 

Eq. (3) is decomposed and plotted into the directed graph, which includes elementary operations 

and elementary functions. As shown in Fig. 2, there are 15 input nodes and 16 intermediate nodes 

to link between input nodes and the output node; input nodes are comprised of the alternative 

specific constants (ASC) for each alternative and unknown parameters 𝛽  associated with the 

attributes 𝑥, and the intermediate nodes (𝑁𝑖 where 𝑖 = 1, 2, … , 16) play a role of decomposing 

functions. The output node is the probability of selecting the walk mode 𝐏𝑤𝑎𝑙𝑘. Based on the nodes 

interconnected by directed edges, we can produce the sequentially nested structure for the 

probability function so that Eq. (3) can be mapped as follows: 
 

               𝐏𝑤𝑎𝑙𝑘 = 𝑁15 𝑁16⁄  

(9) 
 = e𝑁10 (𝑁11 + 𝑁12 + 𝑁13 + 𝑁14 + 𝑁15)⁄  

 = 𝑒(𝑁5+𝐴𝑆𝐶𝑤𝑎𝑙𝑘)/(𝑒𝑁6 + 𝑒𝑁7 + 𝑒𝑁8 + 𝑒𝑁9 + 𝑒𝑁10) 

 = 𝑒(𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘+𝐴𝑆𝐶𝑤𝑎𝑙𝑘) (𝑒(𝑁1+𝐴𝑆𝐶𝐷𝐴) + 𝑒(𝑁2+𝐴𝑆𝐶𝑆𝑅) + 𝑒(𝑁3+𝐴𝑆𝐶𝑇𝑅) + 𝑒(𝑁4+𝐴𝑆𝐶𝑏𝑖𝑘𝑒) + 𝑒(𝑁5+𝐴𝑆𝐶𝑤𝑎𝑙𝑘))⁄  

 

where the nodes from 𝑁16 to 𝑁5 are used to connect input nodes and the output node, and the index 

𝑖 represents the labels of choice alternatives (DA, SR, TR, Bike, and Walk). It should be noted that 

in order to simplify the illustration, nodes associated with the availability of the given alternatives 

are excluded in this graph.  
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Figure 2 Illustration of CG-based multinomial logit model 

 

 

CG-based nested logit model 

A two-level nested structure is described in this subsection. Based on Eq. (4), the probability of 

selecting the walk mode is plotted in Fig. 3. In contrast to the MNL model, this nested model is 

formulated using the conditional probability and marginal probability to account for the correlation 

between bike and walk. Fig. 3 denotes 21 input nodes including the nodes used in the MNL 

computational graph, the log-sum parameter 𝜆𝑚, as well as the log-sum function Γ𝑛𝑚. In addition, 

27 intermediate nodes are embedded to express the decomposed components of NL. With the 

specified nodes and the directed edges, the product of the conditional probability and the marginal 

probability can be computed to derive the probability of selecting the walk mode 𝐏𝑤𝑎𝑙𝑘 as follows:  
 

 𝐏𝑤𝑎𝑙𝑘 = 𝐏𝑤𝑎𝑙𝑘|𝑛𝑜𝑛−𝑎𝑢𝑡𝑜𝐏𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 = 𝑁26𝑁27 (10) 

 

The conditional probability 𝐏𝑤𝑎𝑙𝑘|𝑛𝑜𝑛−𝑎𝑢𝑡𝑜  is equal to 𝑁26 , and the term 𝑁27  indicates the 

marginal probability of falling into the non-auto group. To be specific, the sequential steps of 

mapping the conditional probability 𝐏𝑤𝑎𝑙𝑘|𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 are detailed below: 

 
𝐏𝑤𝑎𝑙𝑘|𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 = 𝑁20 𝑁22⁄  

(11) 

 = 𝑒𝑁15 (𝑁19 + 𝑁20⁄ ) 

 = 𝑒𝑁9 𝜆𝑚⁄ (𝑒𝑁14 + 𝑒𝑁15)⁄  

 = 𝑒(𝑁4+𝐴𝑆𝐶𝑤𝑎𝑙𝑘) 𝜆𝑚⁄ (𝑒𝑁9 𝜆𝑚⁄ + 𝑒𝑁10 𝜆𝑚⁄ )⁄  

 = 𝑒(𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘) 𝜆𝑚⁄ (𝑒𝛽𝑏𝑖𝑘𝑒𝑥𝑏𝑖𝑘𝑒 𝜆𝑚⁄ + 𝑒𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘 𝜆𝑚⁄ )⁄  

 

Eq. (11) illustrates a stepwise procedure for deriving the conditional probability. The detailed 

description of the CG nodes and links can be found in Fig. 3. Similarly, the marginal probability 

𝐏𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 ,which is mapped by the forward propagation of the CG framework, can be written in 

the following stepwise manner:  
 

 𝐏𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 = 𝑁24 𝑁25⁄  

(12

) 

  = 𝜆𝑚𝑁23 (𝑁21 + 𝑁24)⁄  

  = 𝜆𝑚log (𝑁22) (𝑁16 + 𝑁17 + 𝑁18 + 𝜆𝑚𝑁23)⁄  

  = 𝜆𝑚log (𝑁19 + 𝑁20) (𝑒𝑁11 + 𝑒𝑁12 + 𝑒𝑁13 + 𝜆𝑚𝑁23)⁄  
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   ⋮ 

  = 𝜆𝑚log(𝑒𝑁9/𝜆𝑚 + 𝑒𝑁10/𝜆𝑚) (𝑒𝑁6/𝜆𝑚 + 𝑒𝑁7/𝜆𝑚 + 𝑒𝑁8/𝜆𝑚 + 𝜆𝑚log(𝑒𝑁9/𝜆𝑚 + 𝑒𝑁10/𝜆𝑚))⁄  

 

 
 = 

𝜆𝑚log(𝑒(𝛽𝑏𝑖𝑘𝑒𝑥𝑏𝑖𝑘𝑒)/𝜆𝑚 + 𝑒(𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘)/𝜆𝑚)

(𝑒𝑁6/𝜆𝑚 + 𝑒𝑁7/𝜆𝑚 + 𝑒𝑁8/𝜆𝑚 + 𝜆𝑚𝑙𝑜𝑔(𝑒𝑁9/𝜆𝑚 + 𝑒𝑁10/𝜆𝑚))
 

 

 

Eq. (12) is the marginal probability of falling into the non-auto nest. The expression 

log(𝑒(𝛽𝑏𝑖𝑘𝑒𝑥𝑏𝑖𝑘𝑒)/𝜆𝑚 + 𝑒(𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘)/𝜆𝑚) corresponds to the log-sum function Γ𝑛𝑚. By computing 

the product of Eq. (11) and (12), we can now derive the probability function Eq. (10) through the 

graph-oriented function. Please note that the utility function 𝑉𝑛𝑚 shown in Eq. (4) is assumed as 

zero. 

 
Figure 3 Illustration of CG-based two-level nested logit model 

  

 

CG-based integrated choice and latent variable (ICLV) model 

In this subsection, the ICLV function comprising of one latent variable, the stochastic term, 

continuous measurement indicators, as well as the multinomial logit structure is decomposed and 

plotted in a series of nodes (elementary operations) and edges (directions). According to Fig. 4, 17 

input nodes and 22 intermediate nodes are used. 𝑁6, 𝑁14, 𝑁22, and 𝑁23 are used to denote the ICLV 

components, in order to develop the output node 𝐏𝐴1  which is the joint choice probability of 

choosing a drug between four alternatives. With the CG-based structure, the exemplified choice 

probability can be written in the stepwise manner: 

 
 𝐏𝐴1 = 𝑁22 × 𝑁23 

(13

) 

  = (𝑁21/𝑁18) × (𝑁10/𝑁14) 

  = 𝑒−𝑁20/𝜎√2𝜋 × 𝑒𝑁8/(𝑁10 + 𝑁11 + 𝑁12 + 𝑁13) 

   ⋮ 



 

13 

  = 
1

𝜎√2𝜋
𝑒

−
(𝐼−𝜁𝑁6)

2

2𝜎2 ×
𝑒(𝑁1+𝜆𝑁6)

(𝑒(𝑁1+𝜆𝑁6) + 𝑒(𝑁2+𝜆𝑁6) + 𝑒𝑁3 + 𝑒𝑁4)
 

 

Eq. (13) denotes the joint choice probability of falling into drug alternative 1. The first component 

corresponds to the measurement indicators, while 𝑁6  is the structural equation of the latent 

variable. The second term is the discrete choice formulation. In order to simplify the illustration 

shown in Fig. 4, we only show the first iteration of the simulated choice model and exclude nodes 

associated with the availability of the given alternatives. 

 

With the underlying knowledge of building the forward propagation of the CG-based choice 

models, the following subsection discusses the automatic differentiation (AD) algorithm to 

estimate the proposed CG-based choice models in a backpropagation approach. We describe the 

backpropagation step by step using the plotted figures.   

 

 
Figure 4 Illustration of CG-based integrated choice and latent variable (ICLV) model 

 

 

Parameter estimation: automatic differentiation (AD) with BFGS 

In the CG-based architecture, the unknown parameters specified in Eq. (3), (4), and (8) can be 

estimated by minimizing the negative log-likelihood function, and the corresponding objective 

function leads to a particular type of the categorical cross-entropy function proposed by Shannon 

(1948). 
 

 𝐻𝑛(𝐏𝑛, 𝒚𝑛) =  −∑𝑦𝑛,𝑖 ln(P𝑛,𝑖(𝛽))

𝑖∈𝐽

 (14) 

 

where y𝑛,𝑖 is the discrete variable that denotes a choice 𝑖 ∈ 𝐽 selected by a decision maker 𝑛. Eq. 

(14) is commonly expressed as 𝐿𝐿(𝛽) , log-likelihood, in the discrete choice field. Using the 

second-order Taylor’s approximation of log-likelihood function 𝐿𝐿(𝛽𝑘+1) in a neighborhood of 

𝐿𝐿(𝛽𝑘), we can find the optimal value of parameters 𝛽𝑘+1 to maximize 𝐿𝐿(𝛽𝑘+1) (Train, 2009). 
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 𝜕𝐿𝐿(𝛽𝑘+1)

𝜕𝛽𝑘+1
=

𝜕𝐿𝐿(𝛽𝑘)

𝜕𝛽𝑘
+ 𝐵𝑘(𝛽𝑡+1 − 𝛽𝑡) = 0 (15) 

 

The partial derivative of 𝐿𝐿(𝛽𝑘 ) with respect to 𝛽𝑘  and the numerically approximated Hessian 

matrix 𝐵𝑘 are determining the best value of 𝛽𝑘+1. More specifically, when solving Eq. (15), 𝛽𝑘+1 

can be expressed as 𝛽𝑘 + (−𝐵𝑘)
−1(𝜕𝐿𝐿(𝛽𝑘)/𝜕𝛽𝑘). In order to compute the first-order gradients 

of the objective function with respect to each parameter, we utilize the automatic differentiation 

(AD) algorithm.  By utilizing the derived gradients in the BFGS optimizer, we can calculate the 

Hessian matrix which is used to evaluate statistical properties of estimated parameters. A detailed 

description of computing the numerical Hessian matrix is explained in Nocedal and Wright (2006). 

As illustrated in the study, the first-order gradient information is valuable for assisting the chain 

rule-based algorithmic differentiation procedure in deriving the gradients in each choice model.  

 

Consider the estimation of the parameter 𝛽𝑤𝑎𝑙𝑘 shown in the equations. The numerical derivative 

of the parameter in MNL can be derived by the chain rule. 
 

 𝜕𝐿𝐿(𝛽𝑤𝑎𝑙𝑘)

𝜕𝛽𝑤𝑎𝑙𝑘
 = 

𝜕𝐿𝐿(𝛽𝑤𝑎𝑙𝑘)

𝜕P𝑤𝑎𝑙𝑘

𝜕P𝑤𝑎𝑙𝑘

𝜕𝑁16

𝜕𝑁16

𝜕𝑁15

𝜕𝑁15

𝜕𝑁10

𝜕𝑁10

𝜕𝑁5

𝜕𝑁5

𝜕𝛽𝑤𝑎𝑙𝑘
 

(16) 
  

= 
1

P𝑤𝑎𝑙𝑘

(𝑁16 − 𝑁15)

(𝑁16)
2  

𝑒𝑁10𝒙𝑤𝑎𝑙𝑘 

  
= 

1

P𝑤𝑎𝑙𝑘

(𝑒𝑁6 + 𝑒𝑁7 + 𝑒𝑁8 + 𝑒𝑁9)

(𝑒𝑁6 + 𝑒𝑁7 + 𝑒𝑁8 + 𝑒𝑁9 + 𝑒𝑁10)2  
𝑒𝑁10𝒙𝑤𝑎𝑙𝑘 

 

Eq. (16) further details the sequential procedure of computing the partial derivative of 𝐏𝑤𝑎𝑙𝑘 

defined in Eq. (9) with respect to the parameter 𝛽𝑤𝑎𝑙𝑘. The description of the intermediate nodes 

(𝑁𝑖 where i = 6, 7, 8, 9, 10) is illustrated in Fig. 2. The rest of the parameters defined in the CG-

based MNL model can be calculated similarly. Now, utilizing the computational graph for the NL 

model, we introduce the stepwise procedure for computing the partial derivative of the log-

likelihood of 𝐏𝑤𝑎𝑙𝑘 with respect to the parameter 𝛽𝑤𝑎𝑙𝑘 in Eq. (17). 
 

 𝜕𝐿𝐿(𝛽𝑤𝑎𝑙𝑘)

𝜕𝛽𝑤𝑎𝑙𝑘
 = 

𝜕𝐿𝐿(𝛽𝑤𝑎𝑙𝑘)

𝜕P𝑤𝑎𝑙𝑘

𝜕P𝑤𝑎𝑙𝑘

𝜕𝑁26

𝜕𝑁26

𝜕𝑁20

𝜕𝑁20

𝜕𝑁15

𝜕𝑁15

𝜕𝑁10

𝜕𝑁10

𝜕𝑁5

𝜕𝑁5

𝜕𝛽𝑤𝑎𝑙𝑘
 

(17) 

 
 = 

1

P𝑤𝑎𝑙𝑘

𝑁27

𝑁22
𝑒𝑁15

1

𝜆𝑚
𝒙𝑤𝑎𝑙𝑘 

 
 = 

1

P𝑤𝑎𝑙𝑘

𝜆𝑚𝑁23

(𝑁16 + 𝑁17 + 𝑁18 + 𝜆𝑚𝑁23)

𝑒𝑁15

𝜆𝑚
𝒙𝑤𝑎𝑙𝑘 

  = 
1

P𝑤𝑎𝑙𝑘

log(𝑒𝑁14 + 𝑒𝑁15)

(𝑒𝑁11 + 𝑒𝑁12 + 𝑒𝑁13 + 𝜆𝑚 log(𝑒𝑁14 + 𝑒𝑁15))
𝑒𝑁15𝒙𝑤𝑎𝑙𝑘 

 

In the nesting structure, we can observe the log-sum parameter 𝜆𝑚 and inclusive value term as 

log(𝑒𝑁14 + 𝑒𝑁15), and the probability of P𝑤𝑎𝑙𝑘 is as shown in Eq. (10). In a similar manner, the 

stepwise procedure of estimating the partial derivative of the log-likelihood of P𝐴1, Eq. (13), with 

respect to the parameter 𝛽𝐴1 in the ICLV model can be expressed as: 

 

 𝜕𝐿𝐿(𝛽𝐴1)

𝜕𝛽𝐴1
 = 

𝜕𝐿𝐿(P𝐴1)

𝜕P𝐴1

𝜕P𝐴1

𝜕𝑁23

𝜕𝑁23

𝜕𝑁14

𝜕𝑁14

𝜕𝑁10

𝜕𝑁10

𝜕𝑁8

𝜕𝑁8

𝜕𝑁1

𝜕𝑁1

𝜕𝛽𝐴1
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 = 

1

P𝐴1
𝑁22 (−

𝑁10

(𝑁14)
2) 𝑒𝑁8𝒙𝐴1 

 
 = 

1

P𝐴1
𝑁22 (−

𝑒𝑁8

(𝑒𝑁8 + 𝑒𝑁9 + 𝑒𝑁3 + 𝑒𝑁4)2
)𝑒𝑁8𝒙𝐴1 

  = 
1

P𝐴1

1

𝜎√2𝜋
𝑒

−
(𝐼−𝜁𝑁6)

2

2𝜎2 (−
𝑒𝑁8

(𝑒𝑁8 + 𝑒𝑁9 + 𝑒𝑁3 + 𝑒𝑁4)2
) 𝑒𝑁8𝒙𝐴1 

 

With the computed gradients of the log-likelihood function, the TensorFlow-based program starts 

from the initial settings of parameters and convergence criteria. Then these numerical tensors are 

transmitted into the optimizer of BFGS relying on an approximated Hessian matrix, with the goal 

of minimizing the negative log-likelihood function defined by the CG-based structure. Based on 

the iterative algorithm of the optimizer, the inverse of the Hessian matrix 𝐻̂−1 is derived such that 

we can obtain the parameter variance-covariance matrix as follows: 

 
 

SE(𝜷̂) = √
𝛔2(𝜷̂)

𝑁
= √

(𝑯̂−1)

𝑁
=

[
 
 
 

𝜎2(𝛽1) 𝜎(𝛽1)𝜎(𝛽2)

𝜎(𝛽2)𝜎(𝛽1) 𝜎2(𝛽2)
⋯

𝜎(𝛽1)𝜎(𝛽𝑛)

𝜎(𝛽2)𝜎(𝛽𝑛)

⋮ ⋱ ⋮
𝜎(𝛽𝑛)𝜎(𝛽1) 𝜎(𝛽𝑛)𝜎(𝛽2) ⋯ 𝜎2(𝛽𝑛) ]

 
 
 

𝑛×𝑛

 (19) 

 

where 𝛔2(𝜷̂)  is the variance-covariance matrix of the parameters, 𝐻̂−1  is the approximated 

inverse of the Hessian matrix, and 𝑁 is the total number of observations. The diagonal elements 

of 𝝈2(𝜷̂) is the variances of parameters. Then, assuming the null hypothesis of 𝛽𝑜=0, t-statistics 

of each parameter can be obtained. 

 

 
𝑡𝛽̂𝑛

=
𝛽̂𝑛 − 𝛽𝑜

SE(𝛽̂𝑛)
 (20) 

 

Eq. (20) denotes t-statistics of a parameter 𝛽̂𝑛 and 𝑛 ∈ 𝑁, the total number of estimated parameters. 

Detailed information on computing the robust t-ratio can be found in the documentation of 

Biogeme by Bierlaire (2016).  

 

Please note that, while finite differences (numerical differentiation) estimate the gradient (the first-

order derivative) using the difference between a certain point and the point added by a small value, 

the chain rule-based differentiation (AD) produces the exact derivative values. That is, the 

computational graph-based structures can avoid truncation and round-off errors due to numerical 

differentiation and accordingly improve the computational efficiency (Chapra and Canale, 2010). 

Table 2 presents the different characteristics of three estimation models.  
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Table 2. Attributes of two leading estimation packages and CG-based models 
 CG-based Models Biogeme Apollo 

Objective function Log-likelihood (ln𝑃𝑛𝑖(𝜷)) 

Starting values of the 

parameters (MNL and 

NL) 
𝛽𝑖 = 0 where 𝑖 = 0, 1, 2, … , 𝑛; 𝜆𝑁𝐿 = 0.95 

Starting values of the 

parameters (ICLV) 

𝛽𝑖 = 0 where 𝑖 = 0, 1, 2, … , 𝑛; 𝜆𝐼𝐶𝐿𝑉 = 1; 𝜎𝑖 and 𝜁𝑖 = 1 where  𝑖 =
1, 2, 3, 4  

Method of computing 

gradient derivative 

Automatic 

differentiation through 

integration of domain-

specific language and 

low-level CG layers 

Chain rule of 

differentiation with 

analytical gradient 

Numerical derivative 

using advanced 

extrapolation methods 

such as Richardson 

extrapolation 

Optimization method BFGS BFGS BFGS 

Programming language Python, C++ library  Python, C++ library R 

 

In general, CG and both open-source packages use the log-likelihood function as the objective 

function, start from the same initial values for estimation, and implement the BFGS optimizer with 

an approximate second-order gradient. CG and Biogeme are coded based on the Python language 

with underlying C++ libraries, and Apollo (0.2.4 version) is written in the R language 

(computational environment: Windows Intel(R) Core (TM) i7-9750H CPU @2.60GHz, 6 Core(s), 

32 GB RAM, and 500 GB SSD). 
 

 

MODEL ESTIMATION RESULTS 

This section provides the estimation results of MNL, NL, and ICLV models, and our focus is on 

the investigation of the accuracy and performance of computed gradients through various methods. 

The computational efficiency and numerical accuracy of the CG-based models are systematically 

compared to two established DCM estimation packages for MNL and NL models. Using the 

estimation results of ICLV, we demonstrate the ability of the proposed graph-oriented function to 

construct a simulation-based choice model and compare performance to the Apollo package. This 

research does not focus on the behavioral interpretation of the parameters (especially because 

NHTS data does not furnish level of service attributes critical to mode choice model specification, 

and the synthetic dataset is used solely for validating the CG-based models).  

 

Estimation of MNL and NL with constants only 

In Table 3, Part I shows the estimation results of MNL including alternative specific constants 

(ASCs) and their statistical properties. It is found that the graph-oriented approach shows identical 

estimation results when compared to Biogeme and Apollo; as noted earlier, both packages also 

implement the BFGS algorithm to derive the coefficients. 

 

Part II of Table 3 compares numerical differences between the CG-based NL model and the 

benchmark packages. The calibrated coefficients (constants) from CG are consistent with the 

values estimated by the two packages, but the standard errors of the Walk constant and the logsum 

parameter 𝝀 show some numerical inconsistency.  
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Table 3. Model estimation results for MNL and NL 

Part I: MNL 
DSL- based CG Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err t-ratio Coef. Std.err t-ratio 

Driving Alone (DA; base) 0 NA NA 0 NA NA 0 NA NA 

Shared Ride (SR) -1.36 0.016 -84.402 -1.36 0.016 -84.402 -1.36 0.016 -84.940 

Transit (TR) -2.93 0.044 -66.547 -2.93 0.044 -66.547 -2.93 0.044 -66.510 

Bike -3.40 0.068 -50.066 -3.40 0.068 -50.066 -3.40 0.068 -50.080 

Walk -3.28 0.051 -63.870 -3.28 0.051 -63.870 -3.28 0.051 -63.780 

LL (initial) // LL (final) -27031.930 // -16192.126 -27031.930 // -16192.126 -27031.940 // -16192.130 

AIC // BIC 32392.252 // 32426.656 32392.252 // 32426.656 32392.260 // 32426.670 

Part II: NL 
DSL-based CG Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err t-ratio Coef. Std.err t-ratio 

Driving Alone (DA; base) 0 NA NA 0 NA NA 0 NA NA 

Shared Ride (SR) -1.36 0.016 -84.364 -1.36 0.016 -84.963 -1.36 0.016 -84.960 

Transit (TR) -2.92 0.044 -66.056 -2.92 0.044 -66.581 -2.92 0.044 -66.580 

Bike -3.10 0.072 -43.085 -3.10 0.073 -42.253 -3.10 0.073 -42.250 

Walk -3.12 0.059 -52.523 -3.12 0.062 -50.677 -3.12 0.062 -50.680 

Logsum (𝝀) 0.46 0.117 3.917 2.21* 0.622 3.556 0.45 0.127 3.560 

LL (initial) // LL (final) -27031.94 // -16183.793 -27031.94 // -16183.78 -27031.94 // -16183.78 

AIC // BIC 32377.586 // 32420.592 32377.56 // 32420.57 32377.56 // 32420.57 

*Note: The calculated 𝝀 in Biogeme is expressed as the inverse of 𝝀 (i.e., 1 2.21⁄ ≅ 0.45) 

 

In order to check the source of this inconsistency, we investigate how the packages (Biogeme and 

Apollo) approximate the Hessian matrix of the log-likelihood function with respect to each 

parameter. Biogeme aims to approximate the elements of the Hessian matrix based on chain rule 

differentiation (CRD) and calculate the standard errors of the coefficients.  

 

Unlike the estimation results through CRD, the proposed modeling approach in this paper uses 

automatic differentiation (AD) to obtain the first order gradient of the log-likelihood function. Both 

approaches are based on the chain rule-based differentiation, but AD can implement intermediate 

variables in computing gradients, which enables the proposed model to find the analytic gradients 

efficiently. 

 

Table 4 compares the numeric gradients extracted from two approaches (Biogeme and CG-based). 

In Table 4-Part I, we notice the gradients computed through both CRD and AD are approaching 

zero so that the approximated standard errors were closely identical to each other. However, as the 

gradient approximated by CRD in Part II (nested logit) is not sufficiently close to zero, the 

approximated Hessian matrix might yield different standard errors compared to the AD-based 

result. As shown in Eq. (15), the magnitude of the first-order gradients is a critical indicator for 

convergence, which is required to assure maximization of the log-likelihood functions (Train 2009). 

Please note that the approximation issue of CRD has been investigated and discussed by 

Brathwaite (2017) and Brathwaite and Walker, (2018). According to Table 4-Part I, the absolute 

averages of gradients of CRD and AD are 1.32E-05 and 1.78E-09, respectively. Table 4-Part II 

shows the absolute average of the gradients of CRD is 1.16E-04 while the corresponding value for 

AD shows 2.83E-07. The gradients produced from both methods are significantly small, and the 

differences depend on the selection of stopping criteria. In other words, if we use the same stopping 

criteria for the estimation of gradients in both methods, the discrepancy shown in Table 4 would 

vanish.   
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Table 4. Estimated Gradients computed by chain rule differentiation and analytical 

gradient (CRD+AG) and automatic differentiation (AD) through DSL 
Part I:  Gradients of 

MNL 
Chain rule differentiation and analytical 

gradient CRD+AG 

Automatic Differentiation (AD) 

through DSL 

Driving Alone (DA; 

base) 

0 0 

Shared Ride (SR)  -9.85144E-05 1.86265E-08 

Transit (TR) 9.86795E-05 -1.19908E-08 

Bike  -3.09112E-05 4.65661E-10 

Walk  -2.21991E-05 0 

Part II: Gradients of 

NL 
CRD+AG AD + DSL 

Driving Alone (DA; 

base) 

0 0 

Shared Ride (SR) 1.15E-03 1.86265E-09 

Transit (TR) 5.97E-04 4.08152E-07 

Bike  -2.57E-05 9.76317E-07 

Walk  -1.31E-03 -1.57219E-07 

Logsum (𝝀) 1.71E-04 1.86265E-07 

 

 

Estimation of MNL and NL with constants and explanatory variables 

This subsection presents estimation results for a fully specified model including explanatory 

variables. Specifically, five categorical variables and one continuous variable were included. The 

utility function of each mode is influenced by the same explanatory variables; age groups, gender, 

education attainment, household income and size, as well as travel time. There are 33 estimated 

parameters, and the detailed description of each parameter is provided in Table 5 and Table 6. 

Based on the log-likelihood values obtained, all methods showed similarity in terms of the 

estimated coefficients. On the other hand, due to the fact that the two packages used different 

methods to derive the gradients (numerical differentiation and chain-rule differentiation, 

respectively) of the parameters while the CG-based structure utilized the analytical approach (i.e., 

AD), we see differences in the numeric gradients. These differences likely explain the discrepancy 

in standard errors and t-ratio statistics.  

 

The gradients computed by CRD and AD are presented in Table 7. As expected, the gradients 

computed by the algorithmic differentiation are significantly closer to zero compared to the 

counterpart by the chain rule-based approach with different stopping criteria. In terms of the final 

absolute average of gradients in MNL and NL, CRD provides values of 8.72E-05 in MNL and 

1.86E-04 in NL. On the other hand, the estimated gradients using AD are 9.31E-07 in MNL and 

1.07E-08 in NL.  
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Table 5. Model estimation results for Multinomial Logit (MNL) with explanatory variables 

Part III: MNL with explanatory variables 
DSLCG -based MNL Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err t-ratio Coef. Std.err t-ratio 

Drive Alone (DA; base) 0.00 NA NA 0.00 NA NA 0.00 NA NA 

Shared Ride (SR) -1.25 0.07 -17.69 -1.25 0.07 -17.41 -1.25 0.07 -17.38 

Transit (TR) -9.55 0.33 -29.02 -9.55 0.33 -29.12 -9.55 0.33 -29.07 

Bike -3.66 0.30 -12.15 -3.67 0.31 -11.88 -3.67 0.31 -11.86 

Walk -0.54 0.16 -3.36 -0.53 0.18 -3.05 -0.53 0.18 -3.05 

SR 

Gender (Male=1, Female=0) -0.10 0.03 -3.21 -0.10 0.03 -3.18 -0.10 0.03 -3.17 

Aged 30-44 years (Yes=1, No=0) 0.12 0.04 2.85 0.12 0.04 2.80 0.12 0.04 2.79 

Aged 45-59 years (Yes=1, No=0) -0.06 0.04 -1.48 -0.06 0.04 -1.47 -0.06 0.04 -1.47 

Education attainment: Graduate degree (Yes=1, No=0) -0.18 0.04 -4.88 -0.18 0.04 -4.81 -0.18 0.04 -4.82 

Household income: $125,000 or more (Yes=1, No=0) -0.06 0.03 -1.83 -0.06 0.03 -1.82 -0.06 0.03 -1.82 

Household size: Three-person or more (Yes=1, No=0) 0.11 0.03 3.38 0.11 0.03 3.32 0.11 0.03 3.32 

Natural logarithm of travel time (in minutes) -0.02 0.05 -0.43 -0.02 0.05 -0.43 -0.02 0.05 -0.43 

TR 

Gender (Male=1, Female=0) -0.15 0.04 -3.35 -0.15 0.10 -1.49 -0.15 0.10 -1.48 

Aged 30-44 years (Yes=1, No=0) 0.17 0.08 2.17 0.16 0.13 1.30 0.16 0.13 1.31 

Aged 45-59 years (Yes=1, No=0) -0.20 0.08 -2.66 -0.21 0.13 -1.63 -0.21 0.13 -1.63 

Education attainment: Graduate degree (Yes=1, No=0) 0.45 0.08 5.54 0.45 0.10 4.32 0.45 0.10 4.32 

Household income: $125,000 or more (Yes=1, No=0) -0.17 0.09 -1.90 -0.17 0.10 -1.67 -0.17 0.10 -1.67 

Household size: Three-person or more (Yes=1, No=0) -0.04 0.06 -0.59 -0.04 0.11 -0.34 -0.04 0.11 -0.34 

Natural logarithm of travel time (in minutes) 4.33 0.19 22.99 4.33 0.19 22.44 4.33 0.19 22.47 

Bike 

Gender (Male=1, Female=0) 0.62 0.11 5.39 0.61 0.15 3.97 0.61 0.15 3.96 

Aged 30-44 years (Yes=1, No=0) 0.13 0.07 1.83 0.13 0.17 0.74 0.13 0.17 0.74 

Aged 45-59 years (Yes=1, No=0) -0.36 0.07 -5.33 -0.36 0.18 -2.00 -0.36 0.18 -2.01 

Education attainment: Graduate degree (Yes=1, No=0) 0.55 0.08 6.87 0.55 0.14 3.93 0.55 0.14 3.93 

Household income: $125,000 or more (Yes=1, No=0) 0.06 0.08 0.80 0.06 0.14 0.41 0.06 0.14 0.41 

Household size: Three-person or more (Yes=1, No=0) -0.16 0.04 -4.04 -0.16 0.15 -1.08 -0.16 0.15 -1.08 

Natural logarithm of travel time (in minutes) -0.25 0.17 -1.46 -0.24 0.20 -1.16 -0.24 0.20 -1.16 

Walk 

Gender (Male=1, Female=0) -0.17 0.06 -3.02 -0.17 0.11 -1.60 -0.17 0.11 -1.61 

Aged 30-44 years (Yes=1, No=0) -0.07 0.07 -1.01 -0.07 0.14 -0.55 -0.07 0.13 -0.55 

Aged 45-59 years (Yes=1, No=0) -0.46 0.08 -5.45 -0.45 0.13 -3.44 -0.45 0.13 -3.45 

Education attainment: Graduate degree (Yes=1, No=0) 0.27 0.07 3.88 0.26 0.11 2.32 0.26 0.11 2.32 

Household income: $125,000 or more (Yes=1, No=0) -0.21 0.05 -4.10 -0.22 0.11 -2.00 -0.22 0.11 -2.00 

Household size: Three-person or more (Yes=1, No=0) -0.19 0.04 -4.28 -0.20 0.12 -1.59 -0.20 0.12 -1.59 

Natural logarithm of travel time (in minutes) -2.20 0.12 -18.78 -2.20 0.14 -16.18 -2.20 0.14 -16.12 

LL (initial) // LL (final) -27031.94 // -15553.39 -27031.94 // -15553.39 -27031.94 // -15553.39 

AIC // BIC 31170.78 // 31446.02 31170.78 // 31446.02 31170.78 // 31446.02 
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Table 6. Model estimation results for Nested Logit (NL) with explanatory variables 

Part IV: NL with explanatory variables 
DSLCG-based NL Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err t-ratio Coef. Std.err t-ratio 

Drive Alone (DA; base) 0.00 NA NA 0.00 NA NA 0.00 NA NA 

Shared Ride (SR) -1.25 0.07 -17.61 -1.25 0.07 -17.43 -1.25 0.07 -17.43 

Transit (TR) -9.49 0.33 -29.06 -9.49 0.33 -28.97 -9.49 0.33 -28.97 

Bike -2.70 0.37 -7.32 -2.69 0.37 -7.26 -2.69 0.37 -7.26 

Walk -0.70 0.18 -3.97 -0.70 0.18 -3.96 -0.70 0.18 -3.96 

Logsum (𝛌) 0.56 0.11 5.00 1.80* 0.37 4.84 0.56 0.12 4.84 

SR 

Gender (Male=1, Female=0) -0.10 0.03 -3.22 -0.10 0.03 -3.18 -0.10 0.03 -3.18 

Aged 30-44 years (Yes=1, No=0) 0.12 0.04 2.80 0.12 0.04 2.78 0.12 0.04 2.78 

Aged 45-59 years (Yes=1, No=0) -0.06 0.04 -1.47 -0.06 0.04 -1.46 -0.06 0.04 -1.46 

Education attainment: Graduate degree (Yes=1, No=0) -0.18 0.04 -4.93 -0.18 0.04 -4.85 -0.18 0.04 -4.85 

Household income: $125,000 or more (Yes=1, No=0) -0.06 0.03 -1.83 -0.06 0.03 -1.82 -0.06 0.03 -1.82 

Household size: Three-person or more (Yes=1, No=0) 0.11 0.03 3.37 0.11 0.03 3.33 0.11 0.03 3.33 

Natural logarithm of travel time (in minutes) -0.02 0.05 -0.40 -0.02 0.05 -0.39 -0.02 0.05 -0.39 

TR 

Gender (Male=1, Female=0) -0.15 0.05 -3.23 -0.15 0.10 -1.52 -0.15 0.10 -1.52 

Aged 30-44 years (Yes=1, No=0) 0.16 0.08 2.11 0.16 0.13 1.30 0.16 0.13 1.30 

Aged 45-59 years (Yes=1, No=0) -0.21 0.09 -2.45 -0.21 0.13 -1.64 -0.21 0.13 -1.64 

Education attainment: Graduate degree (Yes=1, No=0) 0.44 0.05 8.34 0.44 0.10 4.30 0.44 0.10 4.30 

Household income: $125,000 or more (Yes=1, No=0) -0.18 0.08 -2.22 -0.17 0.10 -1.71 -0.17 0.10 -1.71 

Household size: Three-person or more (Yes=1, No=0) -0.04 0.04 -0.96 -0.04 0.11 -0.38 -0.04 0.11 -0.38 

Natural logarithm of travel time (in minutes) 4.30 0.18 23.46 4.30 0.19 22.38 4.30 0.19 22.38 

N
es

te
d

 G
ro

u
p

 

 Bike 

Gender (Male=1, Female=0) 0.46 0.09 4.90 0.46 0.13 3.52 0.46 0.13 3.52 

Aged 30-44 years (Yes=1, No=0) 0.06 0.10 0.63 0.06 0.14 0.41 0.06 0.14 0.42 

Aged 45-59 years (Yes=1, No=0) -0.40 0.12 -3.46 -0.40 0.15 -2.73 -0.40 0.15 -2.73 

Education attainment: Graduate degree (Yes=1, No=0) 0.45 0.08 5.61 0.45 0.12 3.79 0.45 0.12 3.79 

Household income: $125,000 or more (Yes=1, No=0) 0.00 0.08 0.04 0.00 0.12 0.03 0.00 0.12 0.03 

Household size: Three-person or more (Yes=1, No=0) -0.10 0.07 -1.53 -0.10 0.13 -0.80 -0.10 0.13 -0.80 

Natural logarithm of travel time (in minutes) -0.68 0.22 -3.12 -0.68 0.22 -3.11 -0.68 0.22 -3.11 

 Walk 

Gender (Male=1, Female=0) -0.09 0.07 -1.31 -0.09 0.10 -0.91 -0.09 0.10 -0.91 

Aged 30-44 years (Yes=1, No=0) -0.01 0.11 -0.07 -0.01 0.12 -0.07 -0.01 0.12 -0.07 

Aged 45-59 years (Yes=1, No=0) -0.41 0.11 -3.77 -0.41 0.12 -3.39 -0.41 0.12 -3.39 

Education attainment: Graduate degree (Yes=1, No=0) 0.34 0.07 4.78 0.34 0.10 3.25 0.34 0.10 3.25 

Household income: $125,000 or more (Yes=1, No=0) -0.18 0.08 -2.27 -0.18 0.10 -1.78 -0.18 0.10 -1.78 

Household size: Three-person or more (Yes=1, No=0) -0.21 0.06 -3.28 -0.21 0.11 -1.88 -0.21 0.11 -1.88 

Natural logarithm of travel time (in minutes) -2.02 0.13 -15.04 -2.02 0.14 -14.23 -2.02 0.14 -14.23 

LL (initial) // LL (final) -26962.012 // -15547.65 -27107.14 // -15547.65 -26962.02 // -15547.65 

AIC // BIC 31161.29 // 31445.13  31161.29 // 31445.13  31161.29 // 31445.13  

*Note: The calculated logsum coefficient in Biogeme is expressed as the inverse of 𝝀 (i.e., 1 1.7968⁄ ≅ 0.56) 
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Table 7. Gradients estimated by chain rule differentiation (CRD) and automatic differentiation (AD) through DSL- based CG 

Estimated Gradients 
Part III: Gradients of MNL Part IV: Gradients of NL 

Chain Rule Differentiation AD+DSL CG Chain Rule Differentiation AD+DSL CG 

Drive Alone (DA; base) 0 0 0 0 

Shared Ride (SR) -4.54E-04 -3.04E-06 -4.25E-04 3.09E-07 

Transit (TR) -3.47E-03 -2.75E-06 -2.15E-03 8.67E-08 

Bike 1.43E-03 4.66E-07 -1.76E-03 1.12E-07 

Walk -8.73E-04 -6.45E-06 -4.12E-04 1.81E-07 

Logsum (𝛌) NA NA 1.30E-03 4.11E-07 

Shared Ride (SR)     

Gender  5.35E-04 2.84E-07 3.96E-04 1.70E-07 

Aged 30-44 years  2.35E-03 1.05E-06 8.39E-04 3.11E-08 

Aged 45-59 years  2.48E-03 8.15E-07 4.98E-04 -7.12E-08 

Education attainment: Graduate degree  8.36E-04 3.72E-07 9.26E-04 8.35E-08 

Household income: $125,000 or more  5.04E-04 2.11E-07 6.06E-04 -6.84E-08 

Household size: Three-person or more  -6.85E-04 1.18E-06 3.47E-04 -8.13E-08 

Natural logarithm of travel time  -2.93E-03 2.55E-06 1.30E-03 -2.36E-07 

Transit (TR)     

Gender -9.98E-04 2.25E-06 5.82E-04 1.29E-06 

Aged 30-44 years -5.99E-04 8.00E-06 1.39E-03 5.01E-07 

Aged 45-59 years  4.21E-04 6.02E-06 -5.89E-04 -1.55E-07 

Education attainment: Graduate degree -3.65E-04 1.22E-06 5.96E-04 -8.60E-07 

Household income: $125,000 or more -9.01E-04 9.93E-06 -5.88E-04 -6.74E-07 

Household size: Three-person or more  -3.44E-04 9.02E-07 9.93E-04 -1.31E-06 

Natural logarithm of travel time -2.27E-03 -6.47E-06 -3.75E-04 2.17E-07 

Bike     

Gender  8.69E-04 4.04E-06 -7.97E-04 5.82E-07 

Aged 30-44 years 1.04E-03 9.75E-08 -3.04E-05 1.63E-06 

Aged 45-59 years  -6.08E-04 6.12E-07 -2.67E-03 8.69E-07 

Education attainment: Graduate degree 2.07E-04 -3.88E-06 3.00E-03 7.30E-08 

Household income: $125,000 or more -9.84E-04 5.42E-06 -1.25E-03 1.53E-07 

Household size: Three-person or more 1.35E-04 5.99E-06 5.50E-04 -2.74E-06 

Natural logarithm of travel time  -1.66E-03 -8.02E-06 -1.16E-04 -1.55E-07 

Walk     

Gender 1.05E-03 -1.27E-06 5.64E-04 -2.08E-07 

Aged 30-44 years  -1.21E-04 6.23E-06 -7.54E-04 7.29E-07 

Aged 45-59 years  9.36E-04 -1.25E-05 2.96E-03 5.58E-07 

Education attainment: Graduate degree 1.57E-03 4.72E-06 -1.02E-03 -2.80E-07 

Household income: $125,000 or more 1.14E-03 1.30E-06 7.14E-04 5.81E-07 

Household size: Three-person or more 1.05E-03 8.26E-06 2.43E-04 -1.15E-06 

Natural logarithm of travel time  -2.08E-03 2.29E-06 1.26E-03 -2.24E-07 
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Computational efficiency: MNL and NL  

We now compare the computational efficiency across all methods. As seen in Fig. 5, the CG-based 

models show the best computational performance, and a slight increase in running time is observed 

in both Fig. 5 (a) and (b) when more parameters are added. Biogeme, which is written in Python, 

also provides excellent computational performance to compute a few parameters. However, for a 

larger number of parameters to be calibrated, the Biogeme package could yield a nonlinear increase 

in running time, particularly when models involve non-concave functions (two or multiple nested 

structures). The Apollo package coded in the R language demands significantly more computing 

resources. For instance, when estimating a large set of parameters (i.e., 89 parameters), the average 

running time of CG-based MNL and NL is 10.6 seconds. On the other hand, the average computing 

times for Biogeme and Apollo are 12 minutes and 35 minutes, respectively. In Fig.5 (b), it can be 

seen that the nested logit models estimated by Biogeme and Apollo packages require substantially 

more computational time when the set of variables becomes large.  

 

 
Figure 5 Comparison of computation time between CG-based models, Biogeme, and Apollo 

 

 

ICLV model estimation and computational efficiency 

In this subsection, experimental results for the ICLV model are presented. The graph-oriented 

model and Apollo use the Monte Carlo simulation-based approach to numerically compute the 

ICLV function. By generating random numbers from a normal distribution, we can run the program 

500 times. The specified utility function is defined by two explanatory variables and one latent 

variable constructed by the structural equation where it is defined by three socio-demographic 

characteristics. As we assume the indicators as continuous variables, components required in the 

normal distribution function are estimated. Table 8 demonstrates the ability of the CG-based 

approach to construct the simulation-based choice model, yielding simulated coefficients. Because 

the estimation involves the random sampling procedure and different methods to derive 

coefficients’ gradients, we observe slightly different results between the CG-based ICLV, Biogeme, 

and Apollo. For instance, the initial log-likelihood of CG-based ICLV displays -8405.706 while 

Biogeme and Apollo show values of -8404.603 and -8404.237, respectively. 
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Table 8. Model estimation results for ICLV: Monte Carlo experiment 

ICLV 

DSLCG-based ICLV Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err 
t-

ratio 
Coef. Std.err t-ratio 

Parameters in the utility specification 

Drug: side-effect -0.002 0.0002 -11.03 -0.002 0.0002 -11.1 -0.002 0.0002 -11.05 

Drug: price -0.173 0.032 -5.45 -0.173 0.032 -5.42 -0.173 0.032 -5.42 

𝜆𝑙𝑎𝑡𝑒𝑛𝑡  0.567 0.089 6.33 0.565 0.089 6.37 0.569 0.089 6.39 

Parameters in the structural equation 

Regular user (Yes=1, No=0) -0.677 0.072 -9.47 -0.678 0.087 -7.78 -0.677 0.087 -7.81 

Education attainment: Bachelor’s 

degree (Yes=1, No=0) 
-0.253 0.054 -4.707 -0.249 0.079 -3.15 -0.248 0.079 -3.14 

Aged 50 or above (Yes=1, No=0) 0.675 0.076 8.92 0.677 0.085 8.01 0.674 0.084 7.99 

Parameters in measurement indicators 

𝜁Quality  0.562 0.044 12.7 0.557 0.045 12.3 0.564 0.046 12.4 

𝜁Ingredients  -0.565 0.043 -13.3 -0.564 0.046 -12.2 -0.564 0.046 -12.16 

𝜁Patent  0.613 0.047 13.1 0.608 0.047 13 0.609 0.047 12.89 

𝜁Dominance  -0.400 0.036 -11.21 -0.40 0.041 -9.78 -0.401 0.041 -9.78 

𝜎𝑄𝑢𝑎𝑙𝑖𝑡𝑦 1.053 0.032 33.13 1.05 0.03 34.6 1.051 0.031 34.29 

𝜎𝐼𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡𝑠 1.08 0.030 37.4 1.08 0.031 34.8 1.079 0.031 34.89 

𝜎𝑃𝑎𝑡𝑒𝑛𝑡 1.091 0.033 32.74 1.09 0.033 33.6 1.093 0.033 33.51 

𝜎𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒  1.047 0.025 41.57 1.05 0.027 39.5 1.047 0.027 39.48 

LL (initial) // LL (final) -8405.706 // -7552.271 -8404.603 // -7553.033 -8404.237 // -7552.271 

AIC // BIC 15132.434 // 15201.143 15134.07 // 15202.77 15132.54 // 15201.25 

 

 

In Fig. 6, the CG-based ICLV shows the best computational performance in running Monte Carlo 

simulation for estimating ICLV, when compared to Biogeme and Apollo.  The above limited 

experiments show that, when the number of simulation runs increases, the two-open source 

packages take more computational time than the CG-based approach using DSL. 
 

 
Figure 6 Comparison of simulation running time for ICLV Estimation between DSLCG-

model, Biogeme, and Apollo 
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CONCLUSIONS  

As the influx of real-time streaming data and new mobility technologies appears in the field of 

transportation, transportation planning communities are very interested in systematically 

integrating data-driven models and econometric models. In this paper, to bridge the gap between 

both methods, the functional formulation of discrete choice models is examined in a computational 

graph framework, which is less known in the areas of discrete choice modeling and transportation 

planning, but has been widely used as underlying building blocks for deep learning packages. We 

hope to clearly show an implementable path to empower DCM estimation with the automatic 

differentiation algorithm embedded in CG, through three key findings below. 

 

(a) A computational graph-based framework offers a highly flexible modeling method for 

applying the emerging techniques of deep learning in econometric methods, especially for 

a wide class of discrete choice models. Furthermore, CG can cover a wide range of 

elementary operations in its graph-oriented model representation such that researchers can 

easily integrate standard econometric models with machine learning algorithms that deal 

effectively with large amounts of time series data.    

 

(b) In particular, for MNL and NL models, we demonstrate that CG-based learning process 

produces consistent estimation results compared to two leading packages, namely Biogeme 

and Apollo. In terms of estimating t-statistics, the chain rule of AD provides a robust 

analytical derivation, leading to converging computed gradients toward the optimality 

conditions. Compared to the other approximated gradient methods, the proposed approach 

generates high-quality estimators through a more precise Hessian matrix. Furthermore, by 

demonstrating the capability in the context of the ICLV modeling structure, we also show 

CG can be used as an effective framework in implementing extended choice models. 

 

(c) For emerging transportation planning applications with high-dimensional survey samples 

and real-time big data streams, the proposed methodology holds the promise of achieving 

computational efficiency in handling large-scale datasets and producing rapid model 

updates in a cloud computing environment.  

 

The computational graph-based architectures demonstrate the flexibility of decomposing diverse 

composite functions and redesigning the functions with a new functional form. In the application 

areas of transportation planning, researchers and planners can further use this method to improve 

the accuracy and time of computing/estimating systematic utility functions. As a representative 

example, one can better calculate the logsum term, which is widely used in practice to calculate a 

broad set of accessibility-oriented planning applications (Miller, 2018). One can further extend 

conventional modeling structures such as joint-choice models for modeling travelers’ multi-

dimensional choice decision-making process.  

 

On the one hand, by building choice models through computational graph-based domain-specific 

languages, modelers can integrate such models easily with external deep learning architectures, 

leading to enhanced representation of travelers’ complex activity patterns. In Fig. 7, we provide 

the conceptual framework to illustrate the integration workflow of choice models and deep 

learning techniques.  
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Figure 7 Illustration of developing a consistent modeling structure between choice models 

and deep learning (Using examples from CNN in Alom et al., (2019) and LSTM in Kim et 

al., (2020)) 

 

With modeling structures capable of handling different data sources, computational graph-based 

modeling tools facilitate the estimation of more complex model structures, possibly improving 

interpretability and predictability. More precisely, the efficiency of the CG-based structures can 

help to rapidly estimate models that can be applied to synthetic population datasets, which are 

generated by microsamples and census-based marginal distributions (Ye et al., 2009; Sun et al., 

2018). Additionally, since the graph-based structure can facilitate tensor decomposition (TD) 
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efficiently, planners are able to utilize the synthesized data and different large datasets (e.g., 

mobility trajectories or smart-card records), for a better understanding of travelling patterns (Sun 

and Axhausen, 2016).  

 

To further illustrate our overarching modeling approach, we use the conceptual framework in in 

Fig. 7 to highlight the needed consistency of modeling language to build behavioral models and 

machine learning architectures. We hope this CG-oriented perspective could allow us to seamlessly 

integrate traditional econometric traveler behavior models with new and emerging data-driven 

approaches. Overall, the proposed graph-based modeling framework not only offers the flexibility 

of expanding conventional modeling approaches but also enables planners and policy makers to 

estimate the system-wide utility more precisely for different projects and demand management 

alternatives, potentially leading to better decisions for improved transportation systems.  
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