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EXECUTIVE SUMMARY 

The existing literature on deep reinforcement learning (DRL) has revealed numerous unresolved 

issues regarding its applicability in the context of urban network control. The relationship between 

network properties and learning performance has not been fully explained, and the specific effects 

of factors such as congestion levels, rerouting tendency, and flow loading rates on learning 

outcomes are still unknown. Additionally, there is no conclusive evidence in the current body of 

literature to demonstrate the effectiveness of DRL in highly congested network environments. 

This project aimed to explore potential network properties by investigating the impact of rerouting 

behavior on network efficiency, comparing the performance of a reinforcement learning model and 

a deep reinforcement learning model. The project also aimed to determine how different variables, 

such as congestion level and rerouting tendency, affect rerouting decisions and whether machine 

learning can effectively address the bifurcation phenomenon and increase network efficiency. 

In this report, we explore the impact of rerouting behavior and the limitations of the DRL policy 

in controlling it. Our investigation reveals that the DRL policy faces difficulties in delaying the 

onset of gridlock and providing satisfactory training results in high-density environments. We 

focus on the relationship between bifurcation and rerouting behavior and find that training the 

rerouting behavior with DRL policy can either postpone or eliminate the occurrence of bifurcations. 

We also find that the convergence results are slow and need to be further analyzed in light of the 

known weaknesses of DRL. In contrast to traffic signal control, machine learning applied to 

drivers' adaptive behavior has proved to be more challenging in both low-density and high-density 

traffic scenarios, but moderate density environments have shown more promising outcomes.  

Based on the findings of this study, drivers' adaptive behavior remains a promising factor for traffic 

control and warrants further research. Behavioral research is needed to better understand the 

aversion to rerouting decisions from certain segments of the population. Although this project 

shows that learning these mechanisms from simulation data has proven challenging, further 

research is needed in this direction as it should provide a solid framework to tackle this important 

problem. 
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INTRODUCTION 

In the realm of urban transportation networks, traffic congestion can emerge from a variety of 

unexpected events, defined as changes in traffic state or information unbeknownst to certain 

drivers, such as incidents, road work, or traffic restrictions. As a result, the localized congestion 

can propagate throughout the network, culminating in a veritable gridlock, a state of the system 

where all roads become entirely congested, rendering vehicle movement impossible, which was 

called "complete jam" or "collapse of the network" by Daganzo (1996) and Gayah and Daganzo 

(2011). This situation is infrequent in low-flow traffic, as drivers can perceive or be informed of 

significant changes in travel time and cost before they encounter congestion, providing alternative 

routes. Thus, the gridlock is unlikely to form in a brief period. In contrast, high-flow traffic and 

simulation work can quickly generate gridlock when drivers' rerouting behavior is inadequate, 

leading to deteriorated simulation outcomes. 

The Macroscopic Fundamental Diagram (MFD) exposes a relationship between flow and density 

in a road network, where the bifurcation phenomena refer to the split of the MFD curve at a 

particular density or flow point. The bifurcation point creates two or more potential equilibrium 

states for a given density, which can prompt distinct traffic patterns and flow regimes. This can 

have noteworthy implications for traffic management and control, necessitating the shift of the 

bifurcation point to optimize flow and diminish congestion. Daganzo et al. (1996) discovered that 

increasing driver adaptation to real-time traffic conditions can postpone the bifurcation critical 

density. As such, discovering an effective way to define drivers' rerouting behavior has become a 

critical problem to reduce the effect of bifurcation, thus improving simulation outcomes. 

The development of machine learning (ML) as a dominant paradigm in contemporary decision-

making has led to the widespread deployment of various ML methodologies, including the popular 

technique of reinforcement learning (RL), across a wide range of domains (Mnih et al. 2013). 

Within this fertile research landscape, the application of RL to teach drivers how to effectively 

reroute under different congestion scenarios has emerged as a promising area of investigation. 

However, Laval and Zhou (2019) recent studies have revealed an unexpected and puzzling 

discovery - existing deep reinforcement learning (DRL) models demonstrate a notable inability to 

learn effectively in congested network environments due to the problem of vanishing gradients. 

This finding, while intriguing, must be considered within the context of the underlying assumption 

of complete driver adaptation, where all drivers have a strong ability to adapt their routing 

strategies. Otherwise, the validity of this conclusion may be subject to a potentially significant 

interpretive bias. 

Upon thorough investigation, the existing literature on deep reinforcement learning (DRL) has 

revealed numerous unresolved queries regarding its applicability in congested networks. The 

relationship between network properties and learning performance has not been fully explained, 

and the specific effects of factors such as congestion levels, rerouting tendency, and flow loading 

rates on learning outcomes are still unknown. Additionally, there is no conclusive evidence in the 

current body of literature to demonstrate the effectiveness of DRL in highly congested network 

environments. 

This project aims to explore the potential network properties by investigating the impact of 

rerouting behavior on network efficiency, comparing the performance of reinforcement learning 

model and deep reinforcement learning model. The project also aims to determine how different 
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variables, such as congestion level and rerouting tendency, affect rerouting decisions and whether 

machine learning can effectively address the bifurcation phenomenon and increase network 

efficiency. 

To achieve these objectives, the report is structured as follows. First, the background knowledge 

of macroscopic fundamental diagram in urban networks, reinforcement learning, and the current 

application of RL in traffic control is presented. Next, the problem setup is defined, and deep q-

learning experiments are conducted to identify the impact of density level and rerouting tendency 

on learning performance. Finally, the report concludes with a discussion and outlook section. 
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LITERATURE REVIEW 

Bifurcation phenomena in MFD 

After the Macroscopic Fundamental Diagram (MFD) in network has been verified in previous 

studies (Daganzo, 2007, Geroliminis and Daganzo, 2008), the utility of the MFD has also been 

demonstrated with real-world data in a recent publication (Redmond and Mokhtarian, 2001, 

Geroliminis and Daganzo, 2008, Buisson and Ladier, 2009). As a result, macroscopic models that 

provide a robust description of the multifarious interrelationships between variables across a 

plethora of lanes in sprawling networks have gained significant popularity, surpassing their prior 

status as mere pedagogical curiosities. 

According to the literature, the Macroscopic Fundamental Diagram (MFD) can be accurately 

defined when congestion is homogeneous, and trips remain time-invariant throughout the network. 

This assumption requires that no specific location within the network experiences extreme 

congestion while other areas remain free-flowing. For each lane in the network, it is assumed that 

the kinematic wave model is followed (Lighthill and Whitham, 1955, Richards, 1956), with a 

common fundamental diagram (Daganzo and Geroliminis, 2008, Laval and Castrillon, 2015). 

However, it is challenging to observe a well-defined MFD for a particular network in real-life 

scenarios, as it is rare for all links to exhibit similar congestion levels. 

Previous research has observed a phenomenon where the Macroscopic Fundamental Diagram 

(MFD) curve bifurcates at the transition point from the free flow branch to the congested branch, 

regardless of the loading or unloading periods (Daganzo et al. 2011, Mahmassani et al. 2013b). 

Researchers have attributed this to the instability of equilibrium patterns in the congested regime 

and identified random turning by drivers as an influential factor. Furthermore, it has been 

confirmed that at the high-density level, there exist multiple flow values corresponding to a 

specific density (Jin et al. 2013, Gan et al. 2017). 

Bifurcation phenomena have been identified as the primary cause of low flows at high densities 

and the tendency of networks to jam, with their negative effects diminishing as drivers become 

more adapted to real-time traffic conditions (Daganzo et al. 2011, Mahmassani et al. 2013b). 

Empirical NMFDs reported in the literature have also been found to exhibit bifurcation, and the 

uneven distribution of congestion can negatively impact network performance (Ambuhl et al. 2017, 

Shim et al. 2019). For example, a recent empirical study examined the influence of detouring 

patterns, heterogeneity, commute trips, and trip completion rates on bifurcations in a real-world 

dataset (Shim et al. 2019). 

Deep Reinforcement Learning 

(1) Reinforcement learning (RL) 

Reinforcement learning (RL) is a type of learning that maps environmental states to actions, with 

the goal of maximizing the cumulative reward received during interactions with the environment 

(Sutton and Barto, 2018). Markov Decision Process (MDP) is a common framework used to model 

RL problems, and is typically defined as a quadruple (A, S, R, P): 

1. A: A collection of all action that agent could execute. 𝑎𝑡 ∈ 𝐴 means the action of agent at 
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time t. 

2. S: A collection of all environmental states. 𝑠𝑡 ∈ 𝑆 means the state of agent at time t. 

3. R: 𝑆 × 𝐴 → 𝑅 is the reward function. 𝑟𝑡~𝑅(𝑠𝑡, 𝑎𝑡) means the reward value when agent do 

action 𝑎𝑡 in state 𝑠𝑡. 

4. P: 𝑆 × 𝐴 × 𝑆 → [0, 1]  is the State transfer probability distribution function. 𝑠𝑡 +
1~𝑃(𝑠𝑡, 𝑎𝑡)  means the probability of agent transfer to next state 𝑠𝑡 + 1 when agent do 

action 𝑎𝑡 in state 𝑠𝑡. 

In RL, policy 𝜋: 𝑆 → 𝐴:is a mapping from state space to action space. It is expressed as the agent 

chooses an action 𝑎𝑡  in state 𝑠𝑡  , performs the action and moves to the next state 𝑠𝑡 + 1   with 

probability 𝑓(𝑠𝑡, 𝑎𝑡), while receiving a reward 𝑟𝑡 from environmental feedback. Assuming that the 

immediate reward at each time step in the future must be multiplied by a discount factor 𝛾, the 

sum of rewards from the start of time t to the end of the episode at time T is defined as:  

𝑅𝑡 =  ∑ 𝛾(𝑡′ − 𝑡)𝑟𝑡
′

𝑇

𝑡′=𝑡

(1) 

The state-action value function 𝑄𝜋(𝑠, 𝑎) refers to perform action $a$ in the current state $s$ and 

following the policy 𝝅 until the end of the episode, and the cumulative reward obtained by the 

agent in this process is expressed as: 

𝑄𝜋(𝑠, 𝑎) = 𝐸[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (2) 

For all state-action pairs, if the expected return of a strategy 𝜋∗ is greater than or equal to the 

expected return of all other strategies, then the strategy 𝜋∗ is called the optimal strategy. There 

may be more than one optimal policy, but they share a state-action value function: 

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝜋𝐸[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (3) 

Eq. (3) is called the optimal state-action value function, and the optimal state-action value function 

follows the Bellman optimally equation. which is 

𝑄∗(𝑠, 𝑎) = 𝐸(𝑠′~𝑆)[𝑟 + 𝛾𝑚𝑎𝑥𝑎
′ 𝑄(𝑠′, 𝑎′)|𝑠, 𝑎] (4) 

However, the combination of RL and deep neural network may have problems such as algorithm 

instability (Tsitsiklis and Van Roy, 1996), which has always hindered the development and 

application of DRL. 

(2) Deep Reinforcement learning (DRL) 

Before the emergence of DRL, preliminary work had been conducted. However, due to the 

shortage of training data and computing power, these studies only utilized deep neural networks 

to decrease the dimension of high-dimensional input data so that traditional RL algorithms could 

process it. Riedmiller (2005) was the first to use a multilayer perceptron to estimate the Q-value 

function and proposed the Neural Fitted Q Iteration (NFQ) algorithm. Lange and Riedmiller (2010) 

combined DL model and RL method and introduced a deep auto-encoder (DAE) model. However, 
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DAE was only suitable for control problems with visual perception as the input signal and the state 

space dimension is small. Abtahi and Fasel (2011) applied deep belief network as a function 

approximator in traditional RL, which significantly enhanced the agent's learning efficiency and 

successfully applied it to the character segmentation task of license plate images. Lange and 

Riedmiller (2012) proposed the Deep Fitted Q-Learning (DFQ) algorithm and employed it in 

vehicle control. Koutnik et al. (2014) merged the Neural Evolution (NE) method with the RL 

algorithm and utilized it in a video racing game to achieve the automatic driving of the racing car. 

The application of DRL in transportation 

As per the methodological background of DRL, DRL is a combination of deep learning and RL 

that enables the agent to learn complex, high-dimensional input-output mappings without any prior 

knowledge of the system. In transportation, DRL has been applied to rerouting behavior in two 

application domains: Traffic signal control and Vehicle routing optimization. 

According to the literature, DRL has been applied to various types of traffic control, including 

adaptive traffic signal control, speed limit control, lane pricing, and ramp metering. Among them, 

adaptive traffic signal control has been more extensively studied, and the use of DRL has shown 

promising results. By using DRL, the signal phase can be changed based on real-time traffic 

conditions in the lanes that the signal controls. This problem is modeled as a sequential decision-

making problem. Various DRL methods, such as DQN, DDPG (Casas, 2017), A2C (Coskun et al. 

2018, Chu et al. 2019) and PPO (Lin et al. 2018) have been used to control both single intersections 

and coordinated intersections in a network. Some literature has also applied LSTM with policy 

networks to solve partially observable environments (Shi and Chen 2018, Chu et al. 2019).  

Classical route optimization problems like the travelling salesman problem and vehicle routing 

problem traditionally use static or dynamic traffic designs. However, with the increasing use of 

DRL in transportation, vehicle routing optimization has become another popular research area. c. 

Bello et al. (2016), Khalil et al. (2017) and Kool et al. (2018) utilized DRL to solve the travelling 

salesman problem, and other studies have applied it to vehicle routing problems (Nazari et al. 2018, 

Balaji et al. 2019, Kullman et al. 2019, Zhao et al. 2020, Zhang et al. 2020, Peng et al. 2019, James 

et al. 2019 and Chen et al. 2019). In practical applications, DRL has been used in three areas: urban 

freight delivery, on-demand ridesharing for passengers, and vehicle holding control. 

According to the aforementioned review, it can be observed that DRL has shown promising results 

in signal control, but its application in rerouting behavior has been limited. Previous studies on 

DRL-based routing problems have mainly focused on pre-assignment, with related parameters 

being the characteristics of vehicle parameters. In other words, DRL has only been used to 

determine a route before entering the network, without adjusting a route while the vehicle is 

running in the network. Recently, Mushtaq et al. (2021, 2022) proposed traffic management 

systems that combine signal control and rerouting behavior. However, DRL was only applied to 

signal control, and a predetermined policy was used to reroute vehicles in different traffic situations. 

In one system, an algorithm was used to estimate the waiting time before entering the intersection 

and then perform rerouting behavior. In another system, the focus shifted to lanes, where the policy 

detected the real-time density or number of vehicles on the lane and changed the route for the 

vehicles that would enter it. Therefore, further research is needed to investigate the application of 

DRL policies in training rerouting behavior. 



 

 

6 

 

DATA 

Simulation Environment 

In the simulation work, we aimed to building a realistic traffic environment, with the following 

setting: 

1) Network topology: A homogeneous 9x9 grid network with open boundaries was created in 

SUMO to ensure all intersections had the same layout. This is illustrated in Figure 1 (a). 

2) Intersection configurations: The configurations across all intersections were kept the same, 

with each edge having one lane. The network was homogeneous with no arterial or minor 

roads present. This is illustrated in Figure 1 (b). 

3) O-D: In this project, all vehicles had a fixed origin and destination, with drivers initially 

adopting the shortest route. They would then either continue on the original route or select 

a new one when they arrived at each intersection. 

4) Traffic flow: Traffic flow was evenly distributed throughout the network to avoid any 'hot 

spots.' Each lane produced the same traffic flow at the same time, with each vehicle 

randomly choosing a target lane as their destination before entering the network. 

5) Traffic signals: Each traffic light had the same signal assignment, with a green light 

duration of 35 seconds for phase 1 and phase 3 in the N-S direction and E-W direction, 

respectively, and a red-light duration of 5 seconds for phase 2 and phase 4. 

 
(a) Network Layout                                                    (b) Intersection 

Figure 1 Network layout and intersection configurations 

The DRL Framework 

In the simulation work, we assign a specific vehicle as an agent that learns from the current 

environment. The observed state of each agent is an 5 × 𝑛 matrix of bits that includes the agent's 

direction, the destination's direction, and the three levels of density of the three lanes that the 

vehicle can enter. The action for each agent has three possible options: turn left, go straight, turn 

right, or take a U-turn. The reward at time 𝑡 , 𝑅𝑡  is defined as a combination of the score of 

decreased density and increased route length. For example, if a vehicle reroutes and enters a new 
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lane, the score will increase if the new environment satisfied the requirement in different situation. 

On the other hand, the score will be decreased. 

The policy for the vehicle agent is similar to that of a deep neural network, comprising four layers 

with a Rectified Linear Unit (ReLU) non-linearity activation function. The input layer consists of 

five nodes that represent the observed state of the agent, while the output layer produces the 

probabilities of the three possible action options for the agent. Furthermore, the two hidden layers 

in this study both contain nine nodes to extract and process data before providing the output. 

As the network is homogeneous and contains identical intersections and signal assignments, there 

is no need to use different policies. Therefore, we can use one policy to train a single agent and 

apply the same parameters and trained matrix to other agents. This training process not only avoids 

more explicit coordination but also ensures that the states of all agents are determined solely by 

the training policy. 
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ANALYSIS 

Impact of Driver's adoption on Network efficiency 

We compared the MFD curve of non-adaptive driving behavior and random rerouting behavior in 

different density level. 

The comparison between non-adaptive driving behavior and random rerouting behavior in 

different density levels was conducted by examining the relationship between average flow and 

average density, as depicted in Figure 2. The MFD curve without any rerouting behavior is 

represented by the red line, while the curve with rerouting behavior under DRL policy is 

represented by the blue line. Notably, a significant bifurcation phenomenon was observed in each 

non-adaptive MFD curve, even in different density levels. Surprisingly, the bifurcation occurred 

earlier than expected when the density level was only equal to 0.1, as shown in Figure 2 (a). 

However, the bifurcation did not exhibit a substantial difference in high-density levels, as depicted 

in Figure 2 (d) and Figure 2 (e). 

 
(𝑎) 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 0.1                    (𝑏) 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 0.3                   (𝑐) 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 0.5 

 
(𝑑) 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 0.7                    (𝑒) 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 0.9 

Figure 2 Impact of DRL of rerouting behaviour in different density level 

 

Impact of Driver's rerouting tendency 

We classified driver rerouting tendencies into two types: those who prioritize distance from their 

destination and those who prioritize the density of the next lane. These two types of driver attitudes 

may have different impacts on the learning behavior and resulting MFD curve. Additionally, we 

trained these two models in various density levels.  

Both models demonstrate that the accuracy of learning generally increases as the network density 
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increases. Moreover, the convergence speed in each density level is rapid, but achieving a high 

accuracy requires numerous iterations. However, there are some differences between the two 

models. The model that prioritizes distance from the destination indicates that the learning results 

do not improve beyond a density level of 0.5. Conversely, the accuracy with 𝑘 = 0.5  remained 

superior to 𝑘 = 0.6, see Figure 3 (a). Meanwhile, the accuracy with 𝑘 = 0.5 and 𝑘 = 0.4 in the 

model that prioritizes density is better than 𝑘 = 0.6 initially, but after 3000 iterations, the accuracy 

with 𝑘 = 0.6 surpasses the previous two results, see Figure 3 (b). 

           
(a) Tend to low density                                                      (b) Tend to destination         

Figure 3 The Convergence speed of two models in different density levels 
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RESULTS 

Impact of Driver's adoption on Network efficiency 

Upon careful comparison of the bifurcation curves across disparate density levels, it becomes 

apparent that the judicious deployment of rerouting behavior may serve as a potent panacea for the 

prevention and/or postponement of bifurcation events. However, this salutary effect gradually 

attenuates with the concomitant increase in density level, such that the desirable impact of 

rerouting is diminished when operating in high-density conditions. A cursory perusal of Figure 2 

(e) and (a) reveal that the former exhibits a more modest offset as compared to the latter, thus 

underscoring the rather unsurprising conclusion that random rerouting behavior is unlikely to 

furnish any significant increase in the capacity flow. 

 

An intriguing revelation emanates from the fact that even in the presence of rerouting behavior, 

bifurcation events can still manifest, as borne out by the bifurcation curves in Figure 2 (b), (c) and 

(d). It is notable that the flow in these instances exhibits a stark reduction at the preeminent locale 

of target network density. Remarkably, however, bifurcation is entirely absent in Figure 2 (a) and 

(e), implying that the density variable may not be the unequivocal causal factor in engendering 

these discernible outcomes. 

Impact of Driver's rerouting tendency 

To expound on the phenomenon of model accuracy increasing with density before k=0.5, we must 

consider the fundamental learning principle of models, which is to analyze all possible 

observations of an agent and calculate the probabilities of all available choices. Owing to the 

uneven distribution of vehicles in the network, agents experience fewer potential states at 

extremely low or high densities, as opposed to moderate densities. However, in a free-flowing 

network, it is irrelevant to consider traffic conditions. Nevertheless, the outcomes of the study 

demonstrate that the DRL algorithm cannot train a rerouting behavior model in a congested urban 

network of significant size. This suggests a need for further research to address the limitations of 

the DRL algorithm in training models for adaptive behavior in congested urban networks. 
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CONCLUSIONS AND POLICY IMPLICATIONS 

In this report, we explore the impact of rerouting behavior and the limitations of the DRL policy 

in controlling it. Our investigation reveals that the DRL policy faces difficulties in delaying the 

onset of gridlock and providing satisfactory training results in high-density environments. We 

focus on the relationship between bifurcation and rerouting behavior and find that training the 

rerouting behavior with DRL policy can either postpone or eliminate the occurrence of bifurcation. 

However, we also find that the convergence results are not up to our expectations in both free-flow 

and high-density environments, which raises concerns about the effectiveness of the DRL policy 

in the training process. 

 

We propose that one possible explanation for this phenomenon is the need to reconsider the reward 

and state design and modify the episode training experiment to improve the training outcome. 

Alternatively, it could be that the DRL policy cannot learn to control drivers' behavior in high-

density environments, creating a self-contradictory situation where we need to avoid gridlock 

while promoting driver adaptation to delay or prevent congestion. To enhance the training 

efficiency of the DRL policy, we must address this issue and find ways to balance the two goals. 

Laval and Zhou (2019) have uncovered the inadequacy of current DRL signal control methods in 

high-level congestion. Their findings also suggest that traffic signal control has a negligible impact 

on traffic congestion. In contrast, machine learning applied to drivers' adaptive behavior has 

yielded unsatisfactory results in both low-density and high-density traffic scenarios, but moderate 

density environments have shown more promising outcomes, which is in stark contrast to the 

machine learning applied to traffic signal control. However, based on the current work, drivers' 

adaptive behavior is a promising factor for traffic control, which needs further research. 

 

Regarding the first explanation for the unsatisfactory results, we need to find more evidence to 

prove that DRL for rerouting behavior control can be successful in free-flow situations. Then, we 

can investigate the effect of DRL policy in high-level density. On the other hand, the results have 

shown that the DRL policies lead to better results than random policy in experiments. Thus, we 

cannot consider using a random policy to train the drivers' behavior as it conflicts with real traffic 

situations. As mentioned earlier, we hope the simulation could provide similar results to real traffic 

work. 

 

When drivers make rerouting decisions, besides considering the density of the original target lane, 

the estimated travel distance is also a crucial factor for drivers, which cannot be considered by a 

random policy. Therefore, we need to consider the travel distance factor while designing the DRL 

policy. Based on the discussion above, we hope this report will serve as a valuable source of 

inspiration for further investigations of DRL policy designing and the effectiveness of DRL in 

high-level density. Also, we aim to provide a better understanding of the potential of machine 

learning in addressing the challenges of urban transportation networks and expect it will have 

significant implications for the development of efficient and sustainable transportation systems in 

urban areas. 
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